

Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00

info@teknologisk.dk www.teknologisk.dk

# DESIGN OF COMPLEX CROSS-SECTIONS FOR MASONRY

# I. Introduction

In this paper a method for calculating the load capacity for complex cross-sections is introduced. Complex cross-sections are every type of cross-sections that are not rectangular.

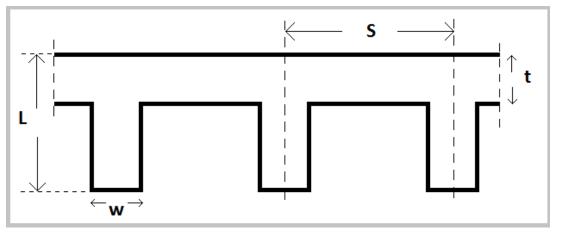



Figure 1. Complex cross-section. Example

In the literature there are some methods for finding the load capacity for complex cross-sections in masonry. They are, however, very sophisticated and require a high degree of numerical calculations and for some cross-sections the use of Finite Element Methods is necessary to find the correct load capacity. All in all not a practical approach for the busy consulting engineer.

The difficulties in designing complex cross-sections have contributed to the current building tradition for masonry. Straight facades and 90 degrees angles in almost all masonry construction (only for veneer walls on steel or concrete frames untraditional constructions can be seen).

In this paper an easy and pragmatic approach for calculating complex structures is introduced using the method of equivalent thickness.

# **II. Symbols**

| А                                   | Area of the complex cross section                                                          |
|-------------------------------------|--------------------------------------------------------------------------------------------|
|                                     | Area of the complex cross-section<br>Area of the transformed cross-section                 |
| A <sub>ef</sub>                     |                                                                                            |
| a<br>a'                             | Angle between individual walls                                                             |
| β                                   | п-а<br>а-п/2                                                                               |
| e                                   | Eccentricity of the load in the complex cross-section                                      |
| -                                   | Eccentricity of the load in the transformed cross-section                                  |
| e <sub>ef</sub><br>f <sub>vd0</sub> | Design shear strength in the horizontal direction with zero                                |
| 7000                                | compression                                                                                |
| <i>f</i> <sub>xk1</sub>             | Design flexural strength in a horizontal line                                              |
| $f_{xk2}$                           | Design flexural strength in a vertical line                                                |
| $\Phi_{\rm m}$                      | Reduction factor                                                                           |
| H                                   | Height of the regarded wall                                                                |
| h <sub>ef</sub>                     | Effective column height according to EN 1996-1-1                                           |
| h                                   | Height of the regarded arch                                                                |
| T                                   | The moment of Inertia (second moment of area)                                              |
| -<br>I <sub>flange,i</sub>          | Moment of inertia for flange "i"                                                           |
| I <sub>body</sub>                   | Moment of inertia for the body                                                             |
| I <sub>Total</sub>                  | The total moment of inertia for S                                                          |
| I <sub>stiffening wall</sub>        | Moment of inertia of the stiffening wall                                                   |
| I <sub>regarded wall</sub>          | Moment of inertia of the regarded wall                                                     |
| k                                   | Length of chord of the regarded arch                                                       |
| Lequivalent                         | Length of the stiffening flange projected to 90° of the re-                                |
|                                     | garded flange                                                                              |
| Lone flange                         | Length of one flange in W-profile                                                          |
| L <sub>1</sub>                      | Length of one flange in profile                                                            |
| L <sub>2</sub>                      | Length of second flange in profile                                                         |
| M <sub>Rk</sub>                     | The moment resistance of the wall (general)                                                |
| M <sub>Rk1</sub>                    | The moment resistance in the horizontal direction                                          |
| M <sub>Rk2</sub>                    | The moment resistance in the vertical direction                                            |
| N <sub>Ed</sub><br>R                | Vertical design load<br>Radius in the regarded arch                                        |
| S                                   | Design length (unit length) of the complex cross-section                                   |
| S<br>Si                             | Part of the design length from flange or body "i"                                          |
| Si<br>S⊡                            | First moment of area                                                                       |
| S <sub>f</sub>                      | Free span of the flanges/body when examining local buck-                                   |
| SF                                  | ling, etc                                                                                  |
| $\sigma_{d,vertical}$               | Design compression stress in the construction                                              |
| $\eta_0$                            | centre of gravity                                                                          |
| t                                   | Thickness of the complex cross-section                                                     |
| t <sub>body</sub>                   | Height of the body                                                                         |
| t <sub>design</sub>                 | Value for the thickness used in the line theory calculation                                |
| t <sub>ef</sub>                     | Effective thickness of the transformed cross-section                                       |
| t <sub>ef,Z1</sub>                  | Effective thickness found through $Z_1$                                                    |
| t <sub>ef,Z2</sub>                  | Effective thickness found through Z <sub>2</sub>                                           |
| t <sub>ef,I</sub>                   | Effective thickness found through I                                                        |
| $t_{equivalent}$                    | Thickness of the stiffening flange projected to 90° of the re-                             |
| <b>L</b>                            | garded flange                                                                              |
| t <sub>1</sub>                      | Thickness of the upper flange                                                              |
| t <sub>2</sub>                      | Thickness of the lower flange<br>Thickness of the flange when projected to a vertical line |
| t <sub>1,horizontal</sub><br>T      | Design shear stresses                                                                      |
| l<br>V                              | Angle in the regarded arch                                                                 |
| V<br>W <sub>Ed</sub>                | Horizontal design load                                                                     |
| Lu                                  |                                                                                            |



| x <sub>1</sub> , y <sub>1</sub> | Intersection in a coordinate system between $L_1$ and $L_2$ when converting an arch |
|---------------------------------|-------------------------------------------------------------------------------------|
| $Z_1$ and $Z_2$                 | Moments of resistance in the upper and lower ends of the cross-section              |
| w                               | Width/thickness of the body                                                         |

# **III. Description of method**

Complex (non-rectangular) cross-sections can be designed as a rectangular crosssection using the "equivalent-thickness-method" described below:

# Method:

- 1. For the cross-section (per unit length (S)) the following parameters are determined:
  - I: The moment of Inertia Z<sub>1</sub> and Z<sub>2</sub>: Moments of resistance
  - Equivalent effective thicknesses are determined using:

t<sub>ef,Z1</sub>: 
$$\sqrt{\frac{6Z_1}{s}}$$
  
t<sub>ef,Z2</sub>:  $\sqrt{\frac{6Z_2}{s}}$   
t<sub>ef,I</sub>:  $\sqrt[3]{\frac{12I}{s}}$ 

- For mainly horizontal loaded walls  $t_{ef}$ : min( $t_{ef,Z1}$ ,  $t_{ef,Z2}$ )
- For mainly vertical loaded walls t<sub>ef</sub>: min(t<sub>ef,Z1</sub>, t<sub>ef,Z2</sub>, t<sub>ef,I</sub>)
- With the unit length S and the effective thickness  $t_{ef}$  (and the loads, parameters of strength, etc) the "Reduction factor"  $\Phi_t$ ,  $\Phi_m$  and  $\Phi_b$  is determined through the rectangular cross-section using annex G in EN 1996-1-1.
- The load capacity is determined through the area of the complex cross-section (A) (and not  $A_{ef}$  based on  $t_{ef}$  which is larger)
- 2. Any eccentricity of the vertical load is proportioned from t to t<sub>ef</sub>. (see Figure 2)

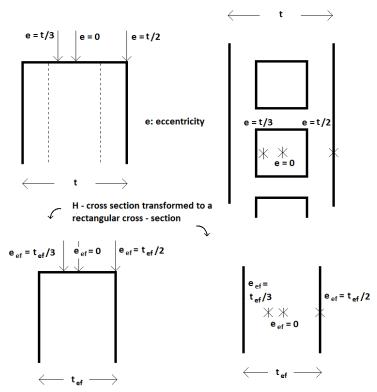



Figure 2. Transformation of the eccentricity from the complex cross-section to the rectangular

- 3. The shear capacity in the flanges shall be examined. I.e.:  ${\rm T} \leq f_{\rm vd0}$
- 4. Instability and load capacity of the individual flanges shall be examined:
  - For vertical loaded walls using the formulas in EN 1996-1-1 (5.6-5.9), 5.5.1.2 (4), etc.
  - For horizontal loaded walls the <u>individual</u> loaded flanges should, if necessary, be examined through the yield line theory and the support evaluated.

For some "inappropriate constructions" phenomena like "lateral buckling" or combined "torsion and buckling" shall be examined. The issue is illustrated in the below figure.

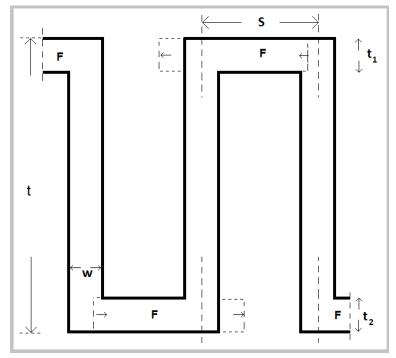



Figure 3. 90 degr serpent wall

For wall types shown in Figure 3 where t >> s failure can occur in the relatively small flanges marked "F" when subject to compression.

At least one of the flanges "F'' will be subject to compression when either lateral or vertical loading is applied on the construction.

The failure load is easily determined regarding the flange as a single compressed member with 2nd order deflection in the "strong direction" using the expression in EN 1996-1-1, section 6.4.

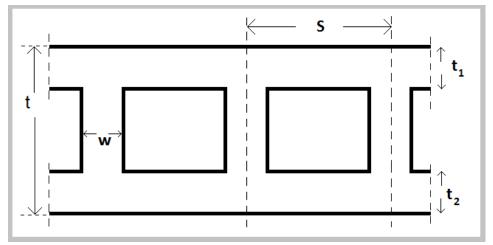
Note: these inappropriate constructions are rare and during design the construction shall be optimized securing that the failure loads from lateral buckling and instability of individual flanges are (at least slightly) larger than failure loads from the complex constructions giving the ultimate load determined from  $t_{\rm ef}$ .

5. When the complex cross-section is part of a 3- or 4-sided wall to be designed by the yield line theory,  $t_{ef}$  shall be implemented in  $M_{Rk}$  in the relevant direction only. This procedure is shown in Example 1.

# **IV. Examples**

In this section the method is described through examples.

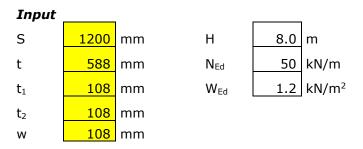
Calculations (using <u>www.EC6design.com</u>) based on  $t_{ef}$  for the masonry are given in Appendix 1.


The intermediate calculations from the spread sheet are shown in Appendix 2.

# Example 1: 4 sided – supported diaphragm wall

The numbers (Ref 1-5) correspond to the numbers in the previous section: "III. Description of method".

## Ref 1


Determination of  $t_{ef}$  (using spread sheet "H O Profiles")





A cross-section as shown in Figure 4 is regarded.

Dimensions:



The calculations of I and  $Z_1$  and  $Z_2$  are quite tedious and normally done by a spread sheet. The intermediate calculation (shown in Appendix 2, page 1) gives the output as shown below:

# Output

| t <sub>ef,I</sub> :  | 539 mm |
|----------------------|--------|
| t <sub>ef,Z1</sub> : | 516 mm |
| t <sub>ef,Z2</sub> : | 516 mm |

Using the introduced formulas, we get:

| For mainly horizontal loaded walls | $t_{ef}$ : = min ( $t_{ef,Z1}$ , $t_{ef,Z2}$ )              | = <b>516</b> mm |
|------------------------------------|-------------------------------------------------------------|-----------------|
| For mainly vertical loaded walls   | $t_{ef}$ : = min ( $t_{ef,Z1}$ , $t_{ef,Z2}$ , $t_{ef,I}$ ) | = <b>516</b> mm |
| For the areas:                     |                                                             |                 |
|                                    | A: = $299376 \text{ mm}^2$                                  |                 |
|                                    | $A_{ef}$ : = 618989 mm <sup>2</sup>                         |                 |

Before finding  $\Phi_m$  it is necessary to determine the equivalent horizontal load  $q_{eqv}$  (See annex I in EN 1996-1-1).

 $\Phi_m$  is determined in the end of this example.

# Ref 2

The vertical load ( $N_{\mbox{\scriptsize Ed}})$  is placed equally on the outer and inner leaf giving a central load.

I.e. the eccentricity is:  $e = e_{ef} = 0$ 

# Ref 3

Shear capacity in the flanges.

The shear capacity can be crucial for the load capacity when the cross-section is not massive. The shear stresses are determined through the theory of plasticity:

 $T_{max} = [\frac{1}{2} \times S \times W_{Ed} \times H] / [w \times (t - t_1/2 - t_2/2)]$ =  $\frac{1}{2} \times 1.2m \times 1.2 \text{ kN/m}^2 \times 8 \text{ m} / 108 \text{ mm} \times (588 - 54 - 54) \text{ mm}$ = 0.11 MPa  $\leq f_{vd0}$ 

## Ref 4

Instability and load capacity of the individual flanges. The outer and inner leaf has the largest effective "free" span ( $S_f$ ) that is:

 $S_f = 1200 - 108$ = 1092 mm.

In this example

 $t_1 = t_2 = 108 \text{ mm.}$ 

## Vertical load

The vertical load on the leaves of the H-cross-section is max: 50/2 kN/m = 25 kN/m giving the stresses:

 $\sigma_{d,vertical} = 25/108$ = 0.23 MPa  $\leq f_d$  2014-02-28 0103/1355724-03

When regarding buckling of the compressed flanges  $h_{ef}$  is determined using (5.9):

$$h_{\rm ef} = 0.5 \times S_{\rm f}$$
  
= 0.5 × 1092  
= 546 mm

and thus:

$$h_{\rm ef}/t_1 = 546/108$$
  
= 5.06

This value is normally not critical and buckling of the individual flanges is not examined.

If buckling of the individual flanges was regarded as critical it should be examined through the ordinary design rules of vertical loaded walls. The point is, though, to design the construction so buckling of the individual flanges do not occur as in this example.

## Horizontal load

Horizontal load on the individual flanges is not regarded crucial for these dimensions.

## Ref 5

The cross-section as a part of a 4-sided wall.

The construction can be designed for vertical and horizontal load as a normal rectangular cross-section using the effective thickness

 $t_{ef} = 516 \text{ mm}$ 

in the vertical direction.

In this example the wall is assumed being a part of a 4-sided supported wall with the following parameters:

Length = 8 m Height = 8 m  $f_{xk1}$  = 0.20 MPa  $f_{xk2}$  = 0.50 MPa

Opening and supporting conditions are given in the below figure.

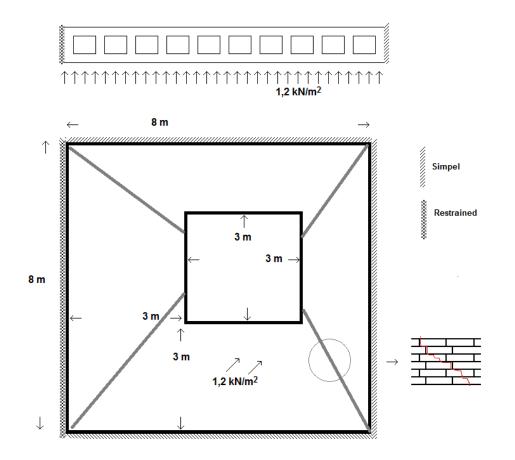



Figure 5. Geometry and supporting conditions for Example 1

See below figure for yield lines in vertical and horizontal directions

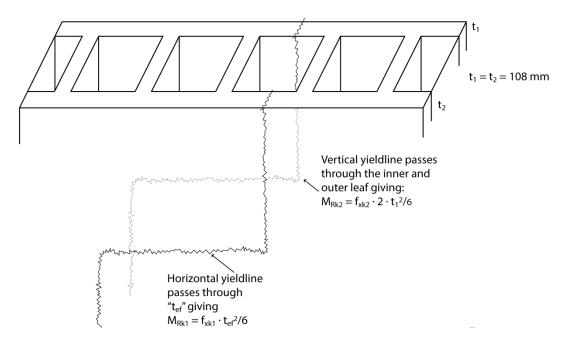



Figure 6. Yield lines in vertical and horizontal directions for continues H-profiles/diaphragm wall

2014-02-28 0103/1355724-03

Determining the moment of resistance per unit height and length gives:

$$\begin{array}{ll} M_{Rk1} & = f_{xk1} \times (t_{ef}^2/6) \\ M_{Rk2} & = f_{xk2} \times (2 \times t_1^2/6) \end{array}$$

Setting in the relevant parameters:

$$M_{Rk1} = 0.20 \times (516^{2}/6)$$
  
= 8875 Nmm/mm  
$$M_{Rk2} = 0.50 \times (2 \times 108^{2}/6)$$
  
= 1944 Nmm/mm

If the software available only uses one general thickness the values for  $(f_{xk1}, f_{xk2})$  can be adjusted. E.g. to

$$t_{design} = t_{ef} = 516 \text{ mm}$$

We get:

$$f_{xk1} = 0.20 \text{ MPa} f_{xk2} = 1944/(516^2/6) = 0.044 \text{ MPa}$$

Using these parameters the load capacity is easily determined when the wall is regarded first as a mainly horizontal loaded wall and then as a mainly vertical loaded wall.

The equivalent horizontal load  $q_{eqv}$  (described in Annex I in EN 1996-1-1) will automatically be determined using this approach. In this example we find  $q_{eqv} = 1.11$  kN/m<sup>2</sup>

Relevant calculations are given in Appendix 1.

The vertical load is increased due to the window/opening, when determining  $\Phi$ .

In the calculations we the reduction factor is found to:

$$\Phi_{\rm m} = 0.44$$

giving the utility degree:

U

= 
$$\sigma / (\Phi_m \times f_d)$$
  
= F/A /  $(\Phi_m \times f_d)$   
= 75×10<sup>3</sup>/(299376/1,2) /0,44 × 2,85  
= 24 %

**Conclusion:** The construction has adequate load capacity.

# Example 2:

In this example, a chevron wall supporting a casted concrete floor is examined. Geometry, design loads and failure mode (A...C) are shown in the figure below. The wall is regarded as 2-sided supported. Shear stresses are not examined.

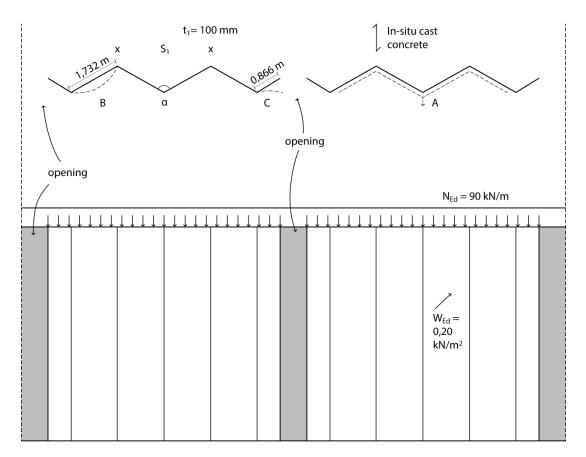



Figure 7. Dimensions and design loads for zigzag walls

The values:

| a  | = 120 °   |  |  |
|----|-----------|--|--|
| S1 | = 3000 mm |  |  |

give  $t_{ef} = 316 \text{ mm}$ 

(see Appendix 2, page 2)

The walls are stiffening each other. The end walls are 3-sided supported with half width.

The interval of eccentricity is in full length of the wall both in top and bottom.

3 calculations are executed. Relevant parameters are shown in the below table. Parameters like  $f_k$ , E, etc. are not relevant for illustration of the method and are not discussed in this note. The values can be seen in the calculations in Appendix 1.

| Calcu-<br>lation | Thick-<br>ness | Eccentricity<br>interval<br>top/bottom | Vertical<br>load | Length | Max. utility<br>Degree | Num. of<br>line<br>supports | Remarks:<br>This calculation is<br>valid for    |
|------------------|----------------|----------------------------------------|------------------|--------|------------------------|-----------------------------|-------------------------------------------------|
|                  | (mm)           | (mm)                                   | (kN/m)           | (m)    | (%)                    |                             |                                                 |
| А                | 316            | -158 to +158                           | 90               | 1      | 88                     | 2                           | The wall as a unit                              |
| В                | 100            | -50 to + 50                            | 78               | 1,732  | 50                     | 4                           | Local buckling for<br>middle wall sec-<br>tions |
| С                | 100            | -50 to + 50                            | 78               | 0,866  | 61                     | 3                           | Local buckling for<br>end wall sections         |

### Table 1. Relevant parameters for the calculations

Comments to the parameters:

Thickness.

A. Regarding the wall as a unit. From the spread sheet 316 mm is found as the equivalent thickness  $t_{\mbox{\scriptsize ef}}.$ 

B. (and C) Local buckling – local thickness

- Eccentricity interval
   The concrete slab is regarded casted in the full width of the wall
   Vertical load
- - = 78 kN/m
- Length and number of support
- A. When only 2-side supported (top and bottom) the length is irrelevant
- B. Middle section walls are regarded as supported on 4 sides according to the spread sheet output (given in Appendix 2). The length is the geometrically length (given in the spread sheet)
- C. End sections walls are regarded as supported on 3 sides according to the spread sheet output (given in Appendix 2). The length is the geometrically length.

From the calculation given in Appendix 1  $\Phi_m$  is found to:

Φ<sub>m</sub> = 0,31

Giving the utility degree:

 $U = \sigma / (\Phi_m \times f_d)$  $= F/A / (\Phi_m \times f_d)$  $= 90 \times 10^3 / (346410/3) / 0,31 \times 2,85$ = 88 %

**Conclusion:** The construction has adequate load capacity.

# Example 3:

Given a wall constructed as an arch with the geometry:

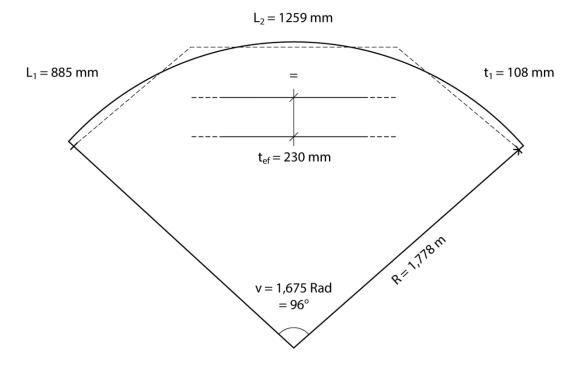



Figure 8. An arch as a load bearing wall

Using the features in the spread sheet n-profile it can be seen that an arch with the parameters:

| R | 1778  | mm  |
|---|-------|-----|
| v | 1,675 | rad |

can be represented with the n-profile with the parameters:

| $L_1$          | 885  | mm |
|----------------|------|----|
| L <sub>2</sub> | 1259 | mm |
| a              | 141  | o  |

Using these values in combination with:

t1 <u>108</u> mm

we do get the effective thickness and the areas:

t<sub>ef</sub> 230 mm

A <u>327132</u> mm<sup>2</sup> A<sub>ef</sub> <u>654760</u> mm<sup>2</sup>

The arch can thus be regarded as a rectangular wall with the thickness of 230 mm (and the length of 2642 mm).

The 3 individual walls give mutual support and can be regarded as 3-sided and 4-sided supported with the thickness of 108 mm.

The load capacity is not determined. The purpose with this example is to show the procedure for arches.

Danish Technological Institute, Masonry Centre Poul Dupont Christiansen

Direct Tel.: +45 72 20 38 20 E-Mail: pdc@teknologisk.dk 2014-02-28 0103/1355724-03 Appendix 1 Page 1 of 15

DANISH TECHNOLOGICAL INSTITUTE

# Calculations from EC6design.com using $t_{ef}$

The notation and symbols in the prints in this appendix can vary from the notations and symbols used in the paper.

## Example 1

# - Horizontal loaded rectangular wall

| Danish Technological Institute                          | Initials: pdc                                                                         |
|---------------------------------------------------------|---------------------------------------------------------------------------------------|
| Kongsvang Allé                                          | Date: 8/29/2013                                                                       |
| DK-8000 Aarhus C                                        | Time: 10:39 AM                                                                        |
| Project: Complex Cross-sections<br>Component: Example 1 | Number: 1355724-03<br>Module: Horizontal loaded rectangular wall /<br>EC6design v.7.0 |

## Input

| The wall is made of: Masonry |                 |                   |
|------------------------------|-----------------|-------------------|
| Dimensions:                  |                 |                   |
| Length= 8.000 m              | Height= 8.000 m | Thickness= 516 mm |

Supporting conditions and moment on edges, if any, for the 4 edges of the wall:

| Left vertical edge    | : Restrained                                    |
|-----------------------|-------------------------------------------------|
| Right vertical edge   | : Simple; moment on the edge = $0 \text{ Nm/m}$ |
| Lower horizontal edge | : Simple; moment on the edge = $0 \text{ Nm/m}$ |
| Upper horizontal edge | : Simple; moment on the edge = $0 \text{ Nm/m}$ |

Form, placement and size of openings:

| Form       | Coordinates to ner of the ope | o the lower left cor-<br>ning | Width | Height |
|------------|-------------------------------|-------------------------------|-------|--------|
|            | x (m)                         | y (m)                         | (m)   | (m)    |
| quadrangle | 3.000                         | 3.000                         | 3.000 | 3.000  |

Material parameters and loads:

| Characteristic flexural strengths:                                                       | $f_{xk1} = 0.20 \text{ MPa}$ $f_{xk2} = 0.04 \text{ MPa}$ |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Consequence class= Normal<br>Design horizontal load<br>(see also moment of edges, above) | Inspection class= Normal<br>w = 1.20 kN/m <sup>2</sup>    |
| Design vertical load                                                                     | n = 50.00 kN/m                                            |

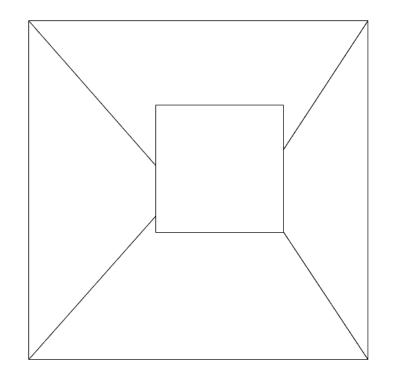
2014-02-28 0103/1355724-03 Appendix 1 Page 2 of 15

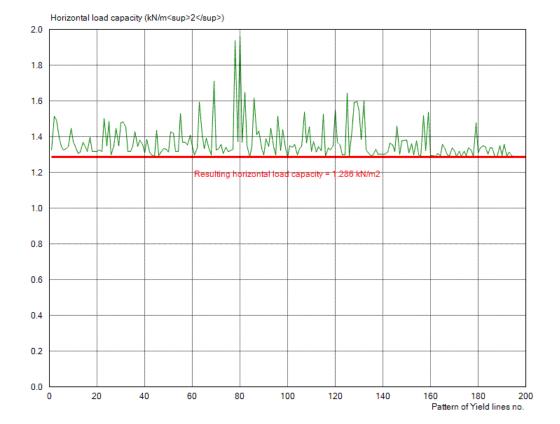
# Calculations

| The area of the wall and the total horizontal load: | A = 64.0 m <sup>2</sup>      | W = 76.8 kN                  |
|-----------------------------------------------------|------------------------------|------------------------------|
| Safety factors for parameters of strength           |                              | $\gamma_c = 1.70$            |
| Design flexural strength:                           | $f_{xd1} = 0.12 \text{ MPa}$ | $f_{xd2} = 0.02 \text{ MPa}$ |
| Design vertical yield moment                        | $m_{vu} = f_{xd1} * t^2/6$   | = 1044 Nm/m                  |
| Design horizontal yield moment:                     |                              |                              |
| contribution from flexural strength                 | $m_0 = f_{xd1} t^2/6$        | = 5221 Nm/m                  |
| contribution from vertical load                     | $m_1 = n^*t/6$               | = 4300 Nm/m                  |
| Resulting horizontal yield moment                   |                              | $m_{lu} = 9521 \text{ Nm/m}$ |

### Result

| Design load capacity (horizontal loa                | ad)                                                  | q <sub>u</sub> <u>= 1.29</u><br><u>kN/m²</u> |
|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| based on the design yield mome                      | ent $m_{\rm su}$ = 1044 Nm/m and $m_{\rm lu}$ = 9521 | Nm/m                                         |
| The horizontal load is $w = 1.20$ kN/m <sup>2</sup> | The utilization ratio is $UR = w / q_u$              | <u>UR = 93 %</u>                             |


Conclusion: The utilization ratio is < 100 %: <u>The load capacity is adequate.</u>


## Additional design

The wall is subject to vertical load and should (if the vertical load is dominant) be designed as a vertical loaded wall, subjected to an equivalent horizontal load

| The supporting conditions and the actual reductions<br>of the cross-section due to openings gives the latera<br>load qu the moment | l <i>m</i> <sub>hu</sub>                          | = 9521 Nm/m         |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|
| For a wall with a simple vertical span and without openings the horizontal load qu will produce the simple moment:                 | $m_{\rm s} = q_{\rm u} * h^2/8$                   | = 10289<br>Nm/m     |
| Factor of reduction $k_a$                                                                                                          | = m <sub>lu</sub> /m <sub>s</sub> =<br>9521/10289 | <u>= 0.93</u>       |
| Equivalent horizontal load = $k_a * w$                                                                                             | = 0.93 * 1.20<br>kN/m²                            | <u>= 1.11 kN/m²</u> |

2014-02-28 0103/1355724-03 Appendix 1 Page 3 of 15





2014-02-28 0103/1355724-03 Appendix 1 Page 4 of 15

# Example 1

# - Vertical loaded diaphragm wall

| Danish Technological Institute                          | Initials: pdc                                                         |
|---------------------------------------------------------|-----------------------------------------------------------------------|
| Kongsyang Allé                                          | Date: 2/28/2014                                                       |
| 8000 Århus C                                            | Time: 10:11 AM                                                        |
| Project: Complex Cross-sections<br>Component: Example 1 | Number: 1355724-03<br>Module: Vertical loaded wall / EC6design v.7.01 |

# Input

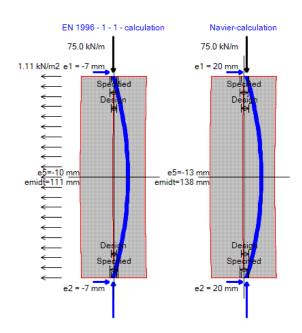
| Dimension                                                                                       |                                                                                |                 |                              |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|------------------------------|--|
| Length= 3.000 m                                                                                 | Thickness= 51                                                                  | l6 mm           | Height= 8.000 m              |  |
| Thickness of outer leaf= 0<br>mm                                                                | (thickness=0 means no outer leaf)                                              |                 |                              |  |
| Supporting conditions                                                                           |                                                                                |                 |                              |  |
| Number of supports $(2-4) = 3$                                                                  | $\rho_{2} = 1.00$                                                              |                 |                              |  |
| Parameters:                                                                                     |                                                                                |                 |                              |  |
| Compressive strength $f_k = 4$                                                                  | .56 MPa                                                                        | Flexural streng | gth $f_{xk1} = 0.20$ MPa     |  |
| E-module $E_{0k} = 3000$ MPa                                                                    |                                                                                | E-module (out   | ter leaf, if any) = 3000 MPa |  |
| Density = 0 kg/m <sup>3</sup>                                                                   | Consequence                                                                    | class= Normal   | Inspection class = Normal    |  |
| Design load on the load carryin                                                                 | g wall                                                                         |                 |                              |  |
| Vertical load= 75.0 kN/m                                                                        | Horizontal load (wind load) = 1.11 kN/m <sup>2</sup> (positive left-<br>wards) |                 |                              |  |
| Interval of eccentricity before correcting e <sub>init</sub> in disfavour. Positive rightwards: |                                                                                |                 |                              |  |
| Top: from -30 to 30 mm;                                                                         | Bottom: from -30 to 30 mm                                                      |                 |                              |  |

2014-02-28 0103/1355724-03 Appendix 1 Page 5 of 15

# Calculations

| Geometric conditions                                                |                                            |                |        |                              |                         |                |
|---------------------------------------------------------------------|--------------------------------------------|----------------|--------|------------------------------|-------------------------|----------------|
| Area = $1.548 \text{ m}^2$                                          | $\rho_{3} = 0.56$                          |                | ρ      | 4 = 0.19                     |                         |                |
| Eff. height= 4469 mm                                                | Eff. thickness= 5                          | 516 mm         | R      | Ratio of slenderness = $8.7$ |                         | rness = 8.7    |
| Initial eccentricity $e_{init} = 10$                                | mm Cr                                      | reep ecce      | ntrici | ty $e_k = 0$                 | mm                      |                |
| Parameters                                                          | Charac. value                              | :              | Saf    | ety fact.                    | Desi                    | ign value      |
| Compressive strength                                                | $f_{\rm k} = 4.56  {\rm MPz}$              | а              | 1.60   |                              | <i>f</i> <sub>d</sub> = | 2.85 MPa       |
| Flexural strength                                                   | $f_{xk1} = 0.20 \text{ M}$                 | Ра             | 1.7    | 1.70 <i>f</i> <sub>xd</sub>  |                         | = 0.12 MPa     |
| E-module                                                            | <i>E</i> <sub>0k</sub> = 3000 M            | 1Pa            | 1.6    | 1.60 <i>E</i> <sub>0d</sub>  |                         | = 1875 MPa     |
| Density                                                             |                                            |                | 0.0    | 0000000                      | N/mi                    | m³             |
| Capacity conditions                                                 |                                            | top            |        | middle                       |                         | bottom         |
| Design normal force, $N_{Ed}$                                       |                                            | 75.0 N/ı       | nm     | 75.0 N/I                     | mm                      | 75.0 N/mm      |
| Minimal width of compression                                        | on zone, N <sub>Ed</sub> / f <sub>cd</sub> | 26 mm          |        | 26 mm                        |                         | 26 mm          |
| Calculations                                                        |                                            |                |        |                              |                         |                |
| The eccentricity of the arch                                        | of compression                             | -7 mm          |        | 111 mm                       | ۱                       | -7 mm          |
| Deflection of the wall, $e_5$                                       |                                            | -              |        | -10 mm                       |                         | -              |
| Resulting eccentricity, e <sub>mr</sub>                             |                                            | 7 mm           |        | 121 mm                       | า                       | 7 mm           |
| (in the middle, at least 1                                          | /20 × thickness)                           |                |        |                              |                         |                |
| Factor of reduction $\Phi$ (ref. E 1(6.4) og (G.1))                 | EN 1996 - 1 -                              | 0.97           |        | <mark>0.44</mark>            |                         | 0.97           |
| Design load capacity N <sub>Rd</sub> (ref. EN 1996 - 1 -<br>1(6.2)) |                                            | 1431.2<br>N/mm |        | 648.7 N                      | /mm                     | 1431.2<br>N/mm |
| Utilization ratio: $N_{Ed}$ / $N_{Rd}$                              |                                            | 5 %            |        | 12 %                         |                         | 5 %            |
| Navier-calculations                                                 |                                            |                |        |                              |                         |                |
| Eccentricity of the arch of co                                      | ompression                                 | 20 mm          |        | 138 mm                       | า                       | 20 mm          |
| Deflection of the wall, $e_5$                                       |                                            | -              |        | -13 mm                       |                         | -              |
| Resulting eccentricity, emr                                         |                                            | 20 mm          |        | 152 mm                       | ۱                       | 20 mm          |
| 1. order moment $M_0 = N_{Ed}$                                      | × e                                        |                |        | 11120 N                      | /mm                     | ′mm            |
| Euler - load N <sub>cr</sub>                                        |                                            |                |        | 3310.4                       | N/mn                    | n              |
| Factor of second order effec<br>N <sub>Ed</sub> )                   | $a = N_{\rm cr} / (N_{\rm cr} -$           |                |        | 1.02                         |                         |                |
| Resulting moment $M_{max} = a$                                      | $\times M_0$                               |                |        | 11377 N                      | /mm                     | ′mm            |
| Section modulus Z                                                   |                                            |                |        | 44376 n                      | nm³/ı                   | mm             |
| Flexural stress abs(M <sub>max</sub> ) / 2                          |                                            |                |        | 0.256 M                      | IPa                     |                |
| Normal stress $N_{Ed}$ / thickness of wall                          |                                            |                |        | 0.145 M                      |                         |                |
| Edge tension stress and -st                                         | -                                          |                |        | 0.111 M                      | IPa                     | 0.118 MPa      |
| Edge compression stress an                                          | -                                          |                |        | 0.402 M                      | IPa                     | 2.850 MPa      |
| Largest utilization ratio = Eo<br>strength                          | dge stress /                               |                |        | 94 %                         |                         |                |

2014-02-28 0103/1355724-03 Appendix 1 Page 6 of 15


## Result

| DANISH        |
|---------------|
| TECHNOLOGICAL |
| INSTITUTE     |

| Utilizations ratios | 5 %  | 12 %  | 5 %  |
|---------------------|------|-------|------|
|                     | J /0 | 12 /0 | J /0 |

#### Conclusion

One set of the utilizations ratios  $\leq$  100 %. Thus the load capacity is adequate



The grey area is the wall. The blue area is the arc of compressio symmetrically to the compression line and with the width  $\rm NEd/fd$ 

The curved red line through the middle is the axis of the wall. The vertical black line is the "system" - line. The compression lin is not indicated, but is in the middle of the zone of compression.

The design interval of eccentricities is shown at the top and bottor. The zone of compression shall be inside these design interval o eccentricities.

For the Navier-calculation is the eccentricity at the top in the mid of the design interval of eccentricities and in the bottom 1/6 of the of the design interval of eccentricities in disfavour of the construct

All loads are marked with black arrows, reactions with blue. All horizontal dimensions are enlarged a factor 5 relative to verti

The calculation has given following result: The load capacity is adequate. 2014-02-28 0103/1355724-03 Appendix 1 Page 7 of 15

# Example 2

# - A. chevron wall, thickness=316 mm, 2-sided supported

| Danish Technological Institute      | Initials: pdc                                  |
|-------------------------------------|------------------------------------------------|
| Kongsvang Allé                      | Date: 8/29/2013                                |
| DK-8000 Aarhus C                    | Time: 10:42 AM                                 |
| Project: Complex Cross-sections     | Number: 1355724-03                             |
| Component: A: Zigzag wall. t=316 mm | Module: Vertical loaded wall / EC6design v.7.0 |

# Input

| Dimension                                                                                              |                                                                                |                |                              |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|------------------------------|--|
| Length= 1.000 m                                                                                        | Thickness= 3                                                                   | 16 mm          | Height= 8.000 m              |  |
| Thickness of outer leaf= 0<br>mm                                                                       | (thickness=0 means no outer leaf)                                              |                |                              |  |
| Supporting conditions                                                                                  |                                                                                |                |                              |  |
| Number of supports (2-4) =<br>2                                                                        | $\rho_{2} = 1.00$                                                              |                |                              |  |
| Parameters:                                                                                            |                                                                                |                |                              |  |
| Compressive strength $f_k = 4$                                                                         | .56 MPa                                                                        | Flexural stren | gth $f_{xk1} = 0.21$ MPa     |  |
| E-module $E_{0k}$ = 3000 MPa                                                                           |                                                                                | E-module (ou   | ter leaf, if any) = 3000 MPa |  |
| Density = $1800 \text{ kg/m}^3$                                                                        | Consequence                                                                    | class= Normal  | Inspection class = Normal    |  |
| Design load on the load carryin                                                                        | g wall                                                                         |                |                              |  |
| Vertical load= 90.0 kN/m                                                                               | Horizontal load (wind load) = 0.20 kN/m <sup>2</sup> (positive left-<br>wards) |                |                              |  |
| Interval of eccentricity before correcting <i>e</i> <sub>init</sub> in disfavour. Positive rightwards: |                                                                                |                |                              |  |
| Top: from -158 to 158 mm;                                                                              | Bottom: from                                                                   | -158 to 158 m  | าท                           |  |

2014-02-28 0103/1355724-03 Appendix 1 Page 8 of 15

# Calculations

| Geometric conditions                                             | - 0.20                                 |           |     | 0.00                       |                              |              |
|------------------------------------------------------------------|----------------------------------------|-----------|-----|----------------------------|------------------------------|--------------|
| Area = $0.316 \text{ m}^2$                                       | $\rho_{3} = 0.30$                      | 16        | '   | $p_4 = 0.06$               |                              | 25.2         |
| Eff. height= 8000 mm                                             | Eff. thickness= 3                      |           | -   |                            |                              | rness = 25.3 |
| Initial eccentricity $e_{init} = 1$                              |                                        | reep ecce |     | -                          |                              |              |
| Parameters                                                       | Charac. value                          |           |     | -                          | ety fact. Design value       |              |
| Compressive strength                                             | $f_{\rm k} = 4.56  {\rm MP}$           |           | 1.6 | -                          | - <u>u</u>                   |              |
| Flexural strength                                                | $f_{xk1} = 0.21 \text{ M}$             |           | 1.7 | 0                          | $f_{xd1} = 0.12 \text{ MPa}$ |              |
| E-module                                                         | $E_{0k} = 3000 \text{ M}$              | 1Pa       | 1.6 |                            |                              | = 1875 MPa   |
| Density                                                          |                                        |           | 0.0 | 00001765 N/mm <sup>3</sup> |                              |              |
| Capacity conditions                                              |                                        | top       |     | middle                     |                              | bottom       |
| Design normal force, N <sub>Ed</sub>                             |                                        | 90.0 N/ı  | mm  | 112.3 N                    | /mm                          | 134.6 N/mm   |
| Minimal width of compress                                        | sion zone, $N_{\rm Ed}$ / $f_{\rm cd}$ | 32 mm     |     | 39 mm                      |                              | 47 mm        |
| Calculations                                                     |                                        |           |     |                            |                              |              |
| The eccentricity of the arc                                      | h of compression                       | -19 mm    |     | 0 mm                       |                              | -11 mm       |
| Deflection of the wall, $e_5$                                    |                                        | -         |     | 22 mm                      |                              | -            |
| Resulting eccentricity, emr                                      |                                        | 19 mm     |     | 22 mm                      |                              | 11 mm        |
| (in the middle, at least $1/20 \times$ thickness)                |                                        |           |     |                            |                              |              |
| Factor of reduction $\phi$ (ref. EN 1996 - 1 - 1(6.4) og (G.1))  |                                        | 0.88      |     | <mark>0.31</mark>          |                              | 0.93         |
| Design load capacity $N_{\text{Rd}}$ (ref. EN 1996 - 1 - 1(6.2)) |                                        | 792.7 N   | /mm | n 283.2 N                  | /mm                          | 837.3 N/mm   |
| Utilization ratio: $N_{\rm Ed}$ / $N_{\rm Rd}$                   |                                        | 11 %      |     | 40 %                       |                              | 16 %         |
| Navier-calculations                                              |                                        |           |     |                            |                              |              |
| Eccentricity of the arch of                                      | compression                            | 59 mm     |     | 73 mm                      |                              | 59 mm        |
| Deflection of the wall, $e_5$                                    |                                        | -         |     | -33 mm                     | 1                            | -            |
| Resulting eccentricity, emr                                      |                                        | 59 mm     |     | 106 mm                     | า                            | 59 mm        |
| 1. order moment $M_0 = N_{Ed}$                                   | ×е                                     |           |     | 10177 N                    | 1mm                          | /mm          |
| Euler - Ioad N <sub>cr</sub>                                     |                                        |           |     | 760.3 N                    | /mm                          | 1            |
| Factor of second order effect: $a = N_{cr} / (N_{cr} - N_{Ed})$  |                                        |           |     | 1.17                       |                              |              |
| Resulting moment $M_{max} = a \times M_0$                        |                                        |           |     | 11941 N                    | 1mm                          | /mm          |
| Section modulus Z                                                |                                        |           |     | 16643 r                    | nm³/                         | mm           |
| Flexural stress $abs(M_{max})$ /                                 | Z                                      |           |     | 0.717 M                    | -                            |              |
| Normal stress N <sub>Ed</sub> / thickne                          |                                        |           |     | 0.355 M                    | IPa                          |              |
| Edge tension stress and -s                                       |                                        |           |     | 0.362 M                    | IPa                          | 0.124 MPa    |
| Edge compression stress and -strength                            |                                        |           |     | 1.073 M                    | IPa                          | 2.850 MPa    |
|                                                                  | -                                      |           |     |                            |                              |              |

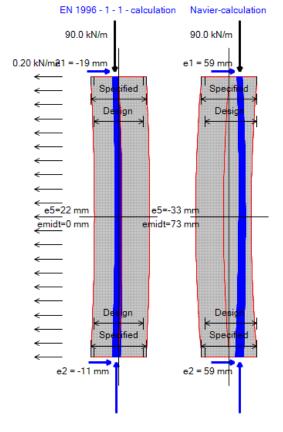
293 %

DANISH TECHNOLOGICAL INSTITUTE

strength

Largest utilization ratio = Edge stress /

2014-02-28 0103/1355724-03 Appendix 1 Page 9 of 15


## Result

| D/ | ANISH       |
|----|-------------|
| TE | CHNOLOGICAL |
| IN | ISTITUTE    |

| Utilizations ratios | 11 % | 40 % | 16 % |
|---------------------|------|------|------|
|                     |      |      |      |

#### Conclusion

One set of the utilizations ratios  $\leq$  100 %. Thus the load capacity is adequate



The grey area is the wall. The blue area is the arc of compressic symmetrically to the compression line and with the width NEd/fd

The curved red line through the middle is the axis of the wall. The vertical black line is the "system" - line. The compression lin is not indicated, but is in the middle of the zone of compression.

The design interval of eccentricities is shown at the top and bott The zone of compression shall be inside these design interval o eccentricities.

For the Navier-calculation is the eccentricity at the top in the mid of the design interval of eccentricities and in the bottom 1/6 of the of the design interval of eccentricities in disfavour of the construct

All loads are marked with black arrows, reactions with blue. All horizontal dimensions are enlarged a factor 5 relative to verti

The calculation has given following result: The load capacity is adequate.

2014-02-28 0103/1355724-03 Appendix 1 Page 10 of 15

# Example 2

# - B. Local buckling of a 4-sided wall

| Danish Technological Institute                                                    | Initials: pdc      |
|-----------------------------------------------------------------------------------|--------------------|
| Kongsvang Allé                                                                    | Date: 8/29/2013    |
| DK-8000 Aarhus C                                                                  | Time: 10:43 AM     |
| Project: Complex Cross-sections<br>Component: B: Zigzag wall. t=100. 4 sid-<br>ed | Number: 1355724-03 |

# Input

| Dimension                        |                                     |             |                                          |
|----------------------------------|-------------------------------------|-------------|------------------------------------------|
| Length= 1.732 m                  | Thickness= 100 mn                   | n           | Height= 8.000 m                          |
| Thickness of outer leaf= 0<br>mm | (thickness=0 means                  | s no oute   | r leaf)                                  |
| Supporting conditions            |                                     |             |                                          |
| Number of supports (2-4) =<br>4  | $\rho_2 = 1.00$                     |             |                                          |
| Parameters:                      |                                     |             |                                          |
| Compressive strength $f_k = 4$   | .56 MPa Flexu                       | ıral streng | gth $f_{xk1} = 0.21$ MPa                 |
| E-module $E_{0k}$ = 3000 MPa     | E-mo                                | odule (out  | er leaf, if any) = 3000 MPa              |
| Density = $1800 \text{ kg/m}^3$  | Consequence class=                  | = Normal    | Inspection class = Normal                |
| Design load on the load carryin  | g wall                              |             |                                          |
| Vertical load= 78.0 kN/m         | Horizontal load (wir<br>wards)      | nd load) =  | = 0.20 kN/m <sup>2</sup> (positive left- |
| Interval of eccentricity befor   | e correcting e <sub>init</sub> in d | lisfavour.  | Positive rightwards:                     |
| Top: from -50 to 50 mm;          | Bottom: from -50 to                 | o 50 mm     |                                          |

2014-02-28 0103/1355724-03 Appendix 1 Page 11 of 15

# Calculations

| Geometric conditions                                |                                      |           |       |               |               |                |
|-----------------------------------------------------|--------------------------------------|-----------|-------|---------------|---------------|----------------|
| Area = $0.173 \text{ m}^2$                          | $\rho_{3} = 0.32$                    |           | ρ     | 4 = 0.11      |               |                |
| Eff. height= 866 mm                                 | Eff. thickness= 1                    | L00 mm    | R     | atio of sl    | endei         | rness = 8.7    |
| Initial eccentricity $e_{init} = 2$ n               | nm Cr                                | reep ecce | ntric | ity $e_k = 0$ | mm            |                |
| Parameters                                          | Charac. value                        | 9         | Saf   | ety fact.     | Desi          | ign value      |
| Compressive strength                                | $f_{\rm k} = 4.56  {\rm MP}$         | а         | 1.6   | 0             | $f_{\rm d} =$ | = 2.85 MPa     |
| Flexural strength                                   | $f_{xk1} = 0.21 \text{ M}$           | IPa       | 1.7   | 0             | $f_{\rm xd1}$ | = 0.12 MPa     |
| E-module                                            | $E_{0k} = 3000 \text{ M}$            | 1Pa       | 1.6   | 0             | $E_{\rm Od}$  | = 1875 MPa     |
| Density                                             |                                      |           | 0.0   | 0001765       | N/m           | m <sup>3</sup> |
| Capacity conditions                                 |                                      | top       |       | middle        |               | bottom         |
| Design normal force, N <sub>Ed</sub>                |                                      | 78.0 N/ı  | mm    | 85.1 N/       | mm            | 92.1 N/mm      |
| Minimal width of compression                        | on zone, $N_{\rm Ed}$ / $f_{\rm cd}$ | 27 mm     |       | 30 mm         |               | 32 mm          |
| Calculations                                        |                                      |           |       |               |               |                |
| The eccentricity of the arch                        | of compression                       | -20 mm    |       | 0 mm          |               | -18 mm         |
| Deflection of the wall, $e_5$                       |                                      | -         |       | 5 mm          |               | -              |
| Resulting eccentricity, e <sub>mr</sub>             |                                      | 20 mm     |       | 5 mm          |               | 18 mm          |
| (in the middle, at least 1/20                       | ) × thickness)                       |           |       |               |               |                |
| Factor of reduction $\Phi$ (ref. E 1(6.4) og (G.1)) | N 1996 - 1 -                         | 0.60      |       | 0.83          |               | 0.65           |
| Design load capacity N <sub>Rd</sub> (re<br>1(6.2)) | f. EN 1996 - 1 -                     | 170.1 N   | /mm   | 1 235.9 N     | /mm           | 184.3 N/mm     |
| Utilization ratio: $N_{\rm Ed}$ / $N_{\rm Rd}$      |                                      | 46 %      |       | 36 %          |               | 50 %           |
| Navier-calculations                                 |                                      |           |       |               |               |                |
| Eccentricity of the arch of co                      | ompression                           | 17 mm     |       | 36 mm         |               | 17 mm          |
| Deflection of the wall, $e_5$                       |                                      | -         |       | 51 mm         |               | -              |
| Resulting eccentricity, e <sub>mr</sub>             |                                      | 17 mm     |       | 15 mm         |               | 17 mm          |
| 1. order moment $M_0 = N_{Ed}$ >                    | < е                                  |           |       | 3236 Nr       | nm/r          | nm             |
| Euler - Ioad N <sub>cr</sub>                        |                                      |           |       | 24.1 N/       | mm            |                |
| Factor of second order effec<br>N <sub>Ed</sub> )   | t: $a = N_{\rm cr} / (N_{\rm cr} -$  |           |       | -0.40         |               |                |
| Resulting moment $M_{max} = a$                      | $\times M_0$                         |           |       | -1279 N       | lmm/          | 'nm            |
| Section modulus Z                                   |                                      |           |       | 1667 m        | m³/m          | ım             |
| Flexural stress abs(M <sub>max</sub> ) / 2          | Ζ                                    |           |       | 0.767 M       | Pa            |                |
| Normal stress $N_{Ed}$ / thicknes                   |                                      |           |       | 0.851 M       |               |                |
| Edge tension stress and -str                        | -                                    |           |       | -0.083        |               | 0.124 MPa      |
| Edge compression stress an                          | -                                    |           |       | 1.618 M       | Pa            | 2.850 MPa      |
| Largest utilization ratio = Ec<br>strength          | lge stress /                         |           |       | 57 %          |               |                |

#### DANISH TECHNOLOGICAL INSTITUTE

2014-02-28 0103/1355724-03 Appendix 1 Page 12 of 15

# Result

 Utilizations ratios
 46 %
 36 %
 50 %

### Conclusion

One set of the utilizations ratios  $\leq$  100 %. Thus the load capacity is adequate

| 78.0 kN/m78.0 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The grey area is the wall. The blue area is the arc of compression<br>symmetrically to the compression line and with the width NEd/fd.                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.20 kls/hm2-20 men1 = 17 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The curved red line through the middle is the axis of the wall.<br>The vertical black line is the "system" - line. The compression line<br>is not indicated, but is in the middle of the zone of compression. |
| ∠ Specifie&specifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed                                                                                                                                                                                                            |
| Contraction Design Desi |                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eccentricities.                                                                                                                                                                                               |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | For the Navier-calculation is the eccentricity at the top in the middle                                                                                                                                       |
| < <u>←</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of the design interval of eccentricities and in the bottom 1/6 of the vorticities of the design interval of eccentricities in disfavour of the construction                                                   |
| ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |
| ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All loads are marked with black arrows, reactions with blue.<br>All horizontal dimensions are enlarged a factor 5 relative to vertica                                                                         |
| <u>&lt;</u> e5=5 men5 <mark>≠5</mark> 1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |
| emidt=@emidt=36 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The calculation has given following result:<br/>The load capacity is adequate.</li> </ul>                                                                                                            |
| < <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The load capacity is adequate.                                                                                                                                                                                |
| ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |
| ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| $\leftarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| <ul> <li></li> <li></li> <li></li> <li></li> <li>→ Design Design</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Π                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| <pre> </pre> </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                               |
| ← Sp <mark>ecifi</mark> e&pecifi<br>← ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
| ← Sp <mark>ecifi</mark> e&pecifi<br>← ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |
| ← Sp <mark>ecifi</mark> e&pecifi<br>← ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |

#### EN 1996 - 1 -Navialculation

2014-02-28 0103/1355724-03 Appendix 1 Page 13 of 15

# Example 2

# - C. Local buckling of a 3-sided end wall

| Danish Technological Institute           | Initials: pdc                            |
|------------------------------------------|------------------------------------------|
| Kongsvang Allé                           | Date: 8/29/2013                          |
| DK-8000 Aarhus C                         | Time: 10:44 AM                           |
| Project: Complex Cross-sections          | Number: 1355724-03                       |
| Component: C: Zigzag wall. t=100. 3 sid- | Module: Vertical loaded wall / EC6design |
| ed                                       | v.7.0                                    |

# Input

| Length= 0.866 mThickness= 100 mmHeight= 8.000 mThickness of outer leaf= 0<br>mm(thickness=0 means no outer leaf)Supporting conditions<br>Number of supports $(2-4) = \rho_2 = 1.00$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mm (thickness=0 means no outer leaf)<br>Supporting conditions<br>Number of supports $(2-4) = 0$ = 1.00                                                                              |
| Number of supports $(2-4) = 0 = 1.00$                                                                                                                                               |
| Number of supports (2-4) = $\rho_2 = 1.00$                                                                                                                                          |
| 5                                                                                                                                                                                   |
| Parameters:                                                                                                                                                                         |
| Compressive strength $f_k$ = 4.56 MPa Flexural strength $f_{xk1}$ = 0.21 MPa                                                                                                        |
| E-module $E_{0k}$ = 3000 MPa E-module (outer leaf, if any) = 3000 MPa                                                                                                               |
| Density = 1800 kg/m <sup>3</sup> Consequence class = Normal Inspection class = Normal                                                                                               |
| Design load on the load carrying wall                                                                                                                                               |
| Vertical load = 78.0 kN/m Horizontal load (wind load) = $0.20 \text{ kN/m}^2$ (positive leftwards)                                                                                  |
| Interval of eccentricity before correcting $e_{init}$ in disfavour. Positive rightwards:                                                                                            |
| Top: from -50 to 50 mm; Bottom: from -50 to 50 mm                                                                                                                                   |

2014-02-28 0103/1355724-03 Appendix 1 Page 14 of 15

# Calculations

| Geometric conditions                                |                                           |           |        |                               |                         |                |  |
|-----------------------------------------------------|-------------------------------------------|-----------|--------|-------------------------------|-------------------------|----------------|--|
| Area = $0.087 \text{ m}^2$                          | $\rho_{3} = 0.30$                         |           | ρ      | 4 = 0.05                      |                         |                |  |
| Eff. height= 2400 mm                                | Eff. thickness= 1                         | .00 mm    | R      | Ratio of slenderness = $24.0$ |                         |                |  |
| Initial eccentricity $e_{init} = 5 m$               | nm Cr                                     | eep eccer | ntrici | ty $e_k = 1$                  | mm                      |                |  |
| Parameters                                          | Charac. value                             |           | Saf    | ety fact.                     | Des                     | ign value      |  |
| Compressive strength                                | $f_{\rm k} = 4.56  {\rm MPz}$             | а         | 1.6    | 0                             | <i>f</i> <sub>d</sub> = | = 2.74 MPa     |  |
| Flexural strength                                   | $f_{xk1} = 0.21 \text{ M}$                | Ра        | 1.7    | 0                             | $f_{\rm xd1}$           | = 0.12 MPa     |  |
| E-module                                            | $E_{0k} = 3000 \text{ M}$                 | 1Pa       | 1.6    | 0                             | $E_{\rm Od}$            | = 1800 MPa     |  |
| Density                                             |                                           |           | 0.0    | 0001765                       | N/m                     | m <sup>3</sup> |  |
| Capacity conditions                                 |                                           | top       |        | middle                        |                         | bottom         |  |
| Design normal force, $N_{Ed}$                       |                                           | 78.0 N/r  | nm     | 85.1 N/                       | mm                      | 92.1 N/mm      |  |
| Minimal width of compressio                         | n zone, N <sub>Ed</sub> / f <sub>cd</sub> | 29 mm     |        | 31 mm                         |                         | 34 mm          |  |
| Calculations                                        |                                           |           |        |                               |                         |                |  |
| The eccentricity of the arch                        | of compression                            | -20 mm    |        | 0 mm                          |                         | -18 mm         |  |
| Deflection of the wall, $e_5$                       |                                           | -         |        | 6 mm                          |                         | -              |  |
| Resulting eccentricity, e <sub>mr</sub>             |                                           | 20 mm     |        | 6 mm                          |                         | 18 mm          |  |
| (in the middle, at least 1/20                       | × thickness)                              |           |        |                               |                         |                |  |
| Factor of reduction $\phi$ (ref. E 1(6.4) og (G.1)) | N 1996 - 1 -                              | 0.60 0.36 |        | 0.36                          |                         | 0.65           |  |
| Design load capacity N <sub>Rd</sub> (re<br>1(6.2)) | f. EN 1996 - 1 -                          | 163.0 N   | /mm    | 98.0 N/I                      | mm                      | 177.1 N/mm     |  |
| Utilization ratio: $N_{Ed}$ / $N_{Rd}$              |                                           | 48 %      |        | 87 %                          |                         | 52 %           |  |
| Navier-calculations                                 |                                           |           |        |                               |                         |                |  |
| Eccentricity of the arch of co                      | ompression                                | 18 mm     |        | 37 mm                         |                         | 18 mm          |  |
| Deflection of the wall, $e_5$                       |                                           | -         |        | 53 mm                         |                         | -              |  |
| Resulting eccentricity, e <sub>mr</sub>             |                                           | 18 mm     |        | 16 mm                         |                         | 18 mm          |  |
| 1. order moment $M_0 = N_{Ed} \times$               | : e                                       |           |        | 3623 Nr                       | nm/r                    | nm             |  |
| Euler - Ioad N <sub>cr</sub>                        |                                           |           |        | 23.1 N/I                      | mm                      |                |  |
| Factor of second order effect $N_{\rm Ed}$ )        | t: $a = N_{cr} / (N_{cr} -$               |           |        | -0.37                         |                         |                |  |
| Resulting moment $M_{\max} = a$                     | $\times M_0$                              |           |        | -1353 N                       | lmm/                    | 'nm            |  |
| Section modulus Z                                   |                                           |           |        | 1667 m                        | m³/m                    | ım             |  |
| Flexural stress abs(M <sub>max</sub> ) / 2          | 7                                         |           |        | 0.812 M                       | Pa                      |                |  |
| Normal stress $N_{Ed}$ / thicknes                   | s of wall                                 |           |        | 0.851 M                       | Pa                      |                |  |
| Edge tension stress and -str                        | ength                                     |           |        | -0.039                        | МРа                     | 0.119 MPa      |  |
| Edge compression stress and                         | -                                         |           |        | 1.662 M                       | Pa                      | 2.735 MPa      |  |
| Largest utilization ratio = Ed<br>strength          | lge stress /                              |           |        | 61 %                          |                         |                |  |

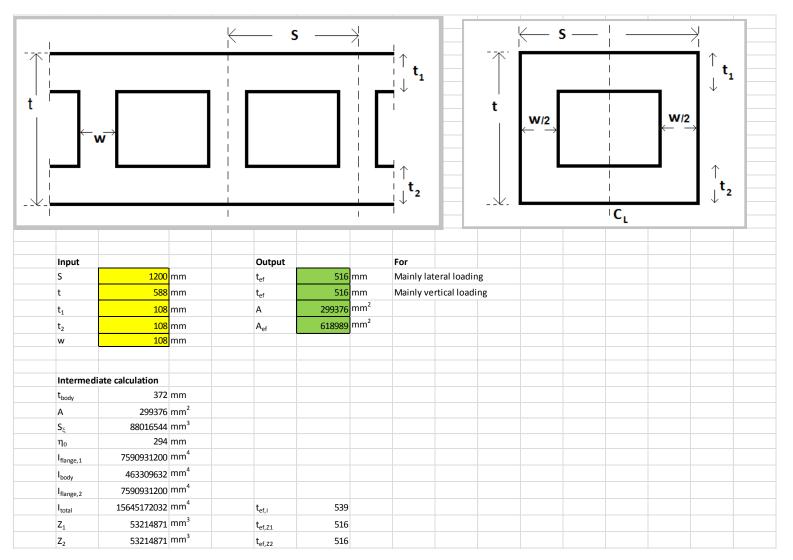


2014-02-28 0103/1355724-03 Appendix 1 Page 15 of 15

# Result

DANISH TECHNOLOGICAL INSTITUTE

| Utilizations ratios | 48 % | <mark>61 %</mark> | 52 % |
|---------------------|------|-------------------|------|


Conclusion

One set of the utilizations ratios  $\leq$  100 %. Thus the load capacity is adequate

| 78.0 kN/m78.0 kN/m                     | The grey area is the wall. The blue area is the arc of compression<br>symmetrically to the compression line and with the width NEd/fd.                                                                                                                                                                                                                                                                                       |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.20 kls/hm2-20 men] = 18 mm           | The curved red line through the middle is the axis of the wall.<br>The vertical black line is the "system" - line. The compression line<br>is not indicated, but is in the middle of the zone of compression.                                                                                                                                                                                                                |
| < Specifie&pecifi                      | ed                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ← Design Desig                         | The design interval of eccentricities is shown at the top and bottom<br>The zone of compression shall be inside these design interval of<br>eccentricities.                                                                                                                                                                                                                                                                  |
|                                        | eccentrictues.                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | For the Navier-calculation is the eccentricity at the top in the middle                                                                                                                                                                                                                                                                                                                                                      |
| ~ I                                    | of the design interval of eccentricities and in the bottom 1/6 of the v<br>of the design interval of eccentricities in disfavour of the construction                                                                                                                                                                                                                                                                         |
| <                                      | All loads are marked with black arrows, reactions with blue.                                                                                                                                                                                                                                                                                                                                                                 |
| ←                                      | All horizontal dimensions are enlarged a factor 5 relative to vertica                                                                                                                                                                                                                                                                                                                                                        |
| <u></u> e5=6 me55 <mark>=5</mark> 3 mm | -                                                                                                                                                                                                                                                                                                                                                                                                                            |
| emidt=@midt=37 mm                      | <ul> <li>The calculation has given following result:</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |
|                                        | The load capacity is adequate.                                                                                                                                                                                                                                                                                                                                                                                               |
| ←                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ←                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < III                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ←                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ←                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D <mark>es</mark> ign Desig            | n de la companya de la |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sp <mark>ed</mark> ifie&pedifi         | ed                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e2 = -18 me2 = 18 mm                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### EN 1996 - 1 -Navial-calatidation

2014-02-28 0103/1355724-03 Appendix 2 Page 1 of 3



Example 1. Spread sheet HO-profiles

DANISH TECHNOLOGICAL INSTITUTE

# 2014-02-28 0103/1355724-03 Appendix 2 Page 2 of 3

#### DANISH TECHNOLOGICAL INSTITUTE

| •                       |                             | $\sim$             | t,       |                                          |                           |    |             |              |                  |                            |             |                    |          |
|-------------------------|-----------------------------|--------------------|----------|------------------------------------------|---------------------------|----|-------------|--------------|------------------|----------------------------|-------------|--------------------|----------|
|                         |                             | α                  | 1        |                                          | 111                       |    |             |              |                  |                            |             |                    |          |
| $\overline{)}$          |                             |                    |          | /                                        |                           |    |             |              |                  |                            |             |                    |          |
|                         |                             |                    |          |                                          |                           |    |             |              |                  |                            |             |                    |          |
|                         | $\checkmark$                |                    |          | $\checkmark$                             |                           |    |             |              |                  |                            |             |                    |          |
|                         | $\mathbf{X}$                |                    |          | Ľ/                                       |                           |    |             |              |                  |                            |             |                    |          |
|                         | •                           |                    |          | $\checkmark$                             |                           |    |             |              |                  |                            |             |                    |          |
|                         | <i></i>                     |                    |          | $\rightarrow$                            |                           |    |             |              |                  |                            |             |                    |          |
|                         | Ň                           | s                  |          | /                                        |                           |    |             |              |                  |                            |             |                    |          |
|                         |                             |                    |          |                                          |                           |    |             |              |                  |                            |             |                    |          |
|                         |                             |                    |          |                                          |                           |    |             |              |                  |                            |             |                    |          |
| Input                   |                             | Output             |          | For                                      |                           |    |             |              |                  |                            |             |                    |          |
| S                       | <u>3000</u> mm              | t <sub>ef</sub>    | 316 m    |                                          | eral loading              |    |             |              |                  |                            |             |                    |          |
| α                       | 120 °                       | t <sub>ef</sub>    | 316 m    | · ·                                      | rtical loading            |    |             |              |                  |                            |             |                    |          |
| t <sub>1</sub>          | 100 mm                      | A                  | 346410 m |                                          |                           |    |             |              |                  |                            |             |                    |          |
|                         |                             | A <sub>ef</sub>    | 948683 m | m <sup>2</sup>                           |                           |    |             |              |                  |                            |             |                    |          |
|                         | · · · ·                     |                    |          | 0.155                                    |                           |    |             |              |                  |                            |             |                    |          |
| Intermediate<br>α       | 2,094                       | pi                 | 3,141593 | Stiffening<br>β                          | walls - active:<br>0,5236 | :  |             |              |                  | allways be $mm and t_1 = $ |             |                    |          |
| t <sub>horizontal</sub> | 2,004<br>200 mm             | pi                 | 3,141333 |                                          |                           | mm | wansacti    | ve. L.g. 10  | 5-0000           |                            | - 100 mm    | the angle          | u < 15-  |
| +                       | 866 mm                      |                    |          | t <sub>equivalent</sub>                  |                           | mm |             |              |                  | e evaluated,               | e.g. accord | ding to EN         | 1996-1-  |
| L                       | 1732 mm                     |                    |          | Lequivalent                              | 31999999971               |    | (5.6 - 5.9) | , 5.5.1.2 (4 | 4) <i>,</i> etc. |                            |             |                    |          |
| L <sub>one flange</sub> | 346410 mm <sup>2</sup>      |                    |          | I <sub>stiffening wall</sub>             | 144337566                 |    | Compact     | constructi   | ions can n       | ot allways b               | e arrangeo  | l with the s       | tiffeni  |
|                         | 149999993 mm <sup>3</sup>   |                    |          | I <sub>regarded wall</sub>               |                           |    | walls acti  | ve. E.g. Fo  | r S= 450 r       | nm, t <sub>1</sub> = 100   | ) mm and    | $\alpha$ = 90 ° th | ne       |
| S <sub>ξ</sub>          |                             |                    |          | I <sub>stifF.</sub> /I <sub>regard</sub> |                           |    |             |              | ot active. T     | his only me                | ans the co  | mpact con          | structio |
| η <sub>0</sub>          | 433 mm                      |                    | 442      | 3 or 4 -side                             | ed Yes                    |    | is acting i | numson.      |                  |                            |             |                    |          |
| total                   | 21650633354 mm <sup>4</sup> | t <sub>ef,I</sub>  | 442 m    |                                          |                           |    |             |              |                  |                            |             |                    |          |
| Z <sub>1</sub>          | 49999998 mm <sup>3</sup>    | t <sub>ef,Z1</sub> | 316 m    |                                          |                           |    |             |              |                  |                            |             |                    |          |
| Z <sub>2</sub>          | 49999998 mm <sup>3</sup>    | t <sub>ef,Z2</sub> | 316 m    | m                                        |                           |    |             |              |                  |                            |             |                    |          |

Example 2. Spread sheet W-profiles

# 2014-02-28 0103/1355724-03 Appendix 2 Page 3 of 3

#### DANISH TECHNOLOGICAL INSTITUTE

|                           |                |     | L <sub>2</sub>     |        | ~          |                                                      |                                                                         |                        | _                        |                |                                             | 1.                                                                                    |        |                | -         | _   |
|---------------------------|----------------|-----|--------------------|--------|------------|------------------------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------|----------------|---------------------------------------------|---------------------------------------------------------------------------------------|--------|----------------|-----------|-----|
|                           | L <sub>1</sub> |     |                    |        | _ `        |                                                      |                                                                         |                        |                          |                |                                             | -2                                                                                    |        |                |           |     |
|                           | -              |     | $\mathcal{O}$      | (      | $\searrow$ |                                                      | t <sub>1</sub>                                                          |                        | _                        | L1 📈           | 9                                           |                                                                                       |        | L <sub>1</sub> | -         | _   |
|                           |                | _ α | L                  | C      | ι          | $\backslash$                                         | ·                                                                       |                        | -                        |                | α                                           | α                                                                                     |        |                |           |     |
|                           |                |     |                    |        |            |                                                      |                                                                         |                        |                          |                |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            |                                                      |                                                                         |                        | - 1                      |                |                                             |                                                                                       |        | 2              |           | _   |
|                           |                |     |                    |        |            |                                                      | $\backslash \backslash \vdash$                                          |                        | -                        | Ń              |                                             |                                                                                       |        | R              | -         | -   |
| //                        |                |     |                    |        |            |                                                      |                                                                         |                        | -                        |                |                                             |                                                                                       |        |                |           | -   |
|                           |                |     |                    |        |            |                                                      |                                                                         |                        |                          |                |                                             |                                                                                       |        |                |           |     |
| -                         |                |     |                    |        |            |                                                      |                                                                         |                        | -                        |                |                                             | $\checkmark$                                                                          |        |                | -         | -   |
| Input                     |                |     | Output             |        |            | For                                                  |                                                                         |                        |                          |                |                                             | v                                                                                     |        |                |           | +   |
| L <sub>1</sub>            | 885            | mm  | t <sub>ef</sub>    | 230    | mm         | Mainly lateral                                       | loading                                                                 |                        |                          |                |                                             |                                                                                       |        |                |           |     |
| L <sub>2</sub>            | 1259           | mm  | t <sub>ef</sub>    | 230    | mm         | Mainly vertica                                       | loading                                                                 |                        |                          |                |                                             |                                                                                       |        |                |           |     |
| α <u>&gt;</u> 90          | 141            | 0   | S                  | 2851   |            |                                                      |                                                                         |                        |                          |                |                                             |                                                                                       |        |                |           |     |
| t <sub>1</sub>            | 108            | mm  | A                  | 327132 |            |                                                      |                                                                         |                        | Input                    |                |                                             | (                                                                                     | Output |                |           |     |
|                           |                |     | A <sub>ef</sub>    | 654760 | mm²        |                                                      |                                                                         |                        | R                        | 1778           | mm                                          | L                                                                                     | -1     | 885            | mm        |     |
| Intermediate calculation  |                |     |                    |        |            |                                                      |                                                                         |                        | v                        | 1,675          | rad                                         | L                                                                                     | -2     | 1259           | mm        |     |
| α                         | 2,461          | rad |                    | pi     | 3,1415     | 593                                                  |                                                                         |                        |                          |                |                                             | C                                                                                     | X      | 141            | 0         | _   |
| t <sub>1,horizontal</sub> | 172            |     |                    |        |            |                                                      |                                                                         |                        |                          |                |                                             |                                                                                       |        |                |           |     |
| t                         | 557            |     |                    |        |            | Stiffening wal                                       |                                                                         |                        | Intermediate calculation |                | An circular arc can be represented by the n |                                                                                       |        |                |           |     |
| A                         | 327132         |     |                    |        |            | β                                                    | 0,8901                                                                  |                        | v(gr)                    | 96,0           | gr                                          | profile.Se                                                                            |        | e gives a pro  | unosal fo | rl. |
| Sξ                        | 53233142       |     |                    |        |            | t <sub>equivalent</sub>                              | 172 mm                                                                  |                        | Pi                       | 3,1415927      |                                             | α based o                                                                             |        |                | ,posuiro  | 1)  |
| $\eta_0$                  | 163            |     |                    |        |            | Lequivalent                                          | 396 mm                                                                  |                        | k                        | 2642           |                                             |                                                                                       |        |                |           |     |
| I <sub>total</sub>        | 11235120177    |     | t <sub>ef,I</sub>  |        | mm         | Istiffening wall 889146492 mm <sup>4</sup>           |                                                                         |                        | h                        | 588            |                                             | When representing the arc through the n<br>locale buckling and local load capacity ca |        |                |           |     |
| Z <sub>1</sub>            | 51840014       |     | t <sub>ef,Z1</sub> |        | mm         | I <sub>regarded wall</sub> 132164784 mm <sup>4</sup> |                                                                         |                        | k/h                      | 4,49<br>692 mm |                                             | "easily" be found through the formulas give                                           |        |                |           |     |
| Z <sub>2</sub>            | 25065986       | mm  | t <sub>ef,Z2</sub> | 230    | mm         | I <sub>stifF</sub> ./I <sub>regard</sub> .           | 6,7                                                                     |                        | x1                       |                |                                             | EN 1996-1                                                                             | -1.    |                |           |     |
|                           |                |     |                    |        |            | 3 or 4 -sided                                        | Yes                                                                     |                        | y1<br>α΄                 | 551,4          |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            | Slender construc                                     | tions should allways be arranged                                        | l with the             | α                        | 2,47           |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            |                                                      | ctive. E.g. For $L_1 = 1200$ , $L_2 = 800$                              | , t <sub>1</sub> = 100 |                          | _,.,           | iuu                                         |                                                                                       |        |                |           | +   |
|                           |                |     |                    |        |            | mm and the angl                                      | e α<131 °                                                               |                        |                          |                |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            | Local bucklingsh                                     | all always be evaluated, e.g. acco                                      | ordingto               |                          |                |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            |                                                      | - 5.9), 5.5.1.2 (4), etc.                                               | -                      |                          |                |                                             |                                                                                       |        |                |           | -   |
|                           |                |     |                    |        |            | Compact constru                                      | ctions can not allways be arrang                                        | ed with the            |                          |                |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            |                                                      | ctive. E.g. For $L_1 = 600$ , $L_2 = 300$ ,                             |                        |                          |                |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            | mm and $\alpha = 135^{\circ}$                        | the stiffening wall is not active<br>act construction is acting in unis | . This only            |                          |                |                                             |                                                                                       |        |                |           |     |
|                           |                |     |                    |        |            |                                                      |                                                                         |                        |                          |                |                                             |                                                                                       |        |                |           |     |

Example 3. Spread sheet n-profiles