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Abstract

This master’s thesis takes a deterministic computational approach to describing struc-
tural robustness of masonry structures. A numerical tool is developed based upon lower
and upper bound limit analysis and finite elements as first pioneered by S.W. Sloan in [1],
[2] and [3]. The tool is experimentally verified by performing a column-loss scenario test
on a 3-point supported masonry deep beam.

The computational tool is an upper-and a lower bound model utilizing plane strain trian-
gular strain finite elements and linear shape functions. The upper bound model applies the
kinematic theorem by velocity- and plastic multiplier rates degrees of freedom whereas the
lower bound model invokes the static theorem by stress state degrees of freedom. The prob-
lem is then formulated as a linear programming problem by linearizing a cohesive-frictional
Mohr-Coulomb yielding criteria and an optimal solution is then found by using Matlab’s
linear programming solver and a limit collapse load is found if the two solutions, approach-
ing the exact plastic solution from the upper- and lower side respectively, are within an
acceptable threshold of error.

The experiment aims to replicate a modern masonry structure as much as possible and
the test object will therefore be constructed as an inner wall would be constructed in modern
masonry structures with a load-bearing reinforced concrete beam on top of the masonry re-
sembling the contribution from reinforced concrete slabs resting upon the wall, two areated
autoclaved concrete beams between the pillars and the central column, and unreinforced
concrete below the masonry pillars to resemble the wall-foundation joint as realistically as
possible.

The test object showed decent ductility in failure and the numerical results were in well
accordance with the experimental ones as the experimental load was 82.2% of the numeri-
cally predicted collapse load, which given the strict assumptions of material behavior done
in limit analysis not necessarily obeyed by the multi-level anisotropies of masonry, is taken
as an acceptable error.
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Notation lists
Ab Lower bound or upper bound boundary local equality constraint matrix
Ab,global Lower bound or upper bound boundary global equality constraint matrix
Ad Lower bound discontinuity equilibrium local equality constraint matrix
Ad,global Lower bound discontinuity equilibrium global equality constraint matrix
Ai Lower bound internal equilibrium local equality constraint matrix
Ai,global Lower bound internal equilibrium global equality constraint matrix
Ay Lower bound yielding local inequality constraint matrix
Ay,global Lower bound yielding global inequality constraint matrix
Ae,v Upper bound element flow rule velocity components equality constraint ma-

trix
Ae,v,global Upper bound element flow rule velocity components global equality con-

straint matrix
Ae,λ Upper bound element flow rule plastic multiplier components equality con-

straint matrix
Ae,λ ,global Upper bound element flow rule plastic multiplier components global equality

constraint matrix
Ad,v Upper bound discontinuity flow rule velocity components equality constraint

matrix
Ad,v,global Upper bound discontinuity flow rule velocity components global equality con-

straint matrix
Ad,d Upper bound discontinuity flow rule discontinuity velocity components equal-

ity constraint matrix
Ad,d,global Upper bound discontinuity flow rule discontinuity velocity components global

equality constraint matrix
Ae Area of an element
Ak Yield linearization coefficient with respect to x-directional normal stress σx

and linearization plane k
Bk Yield linearization coefficient with respect to y-directional normal stress σy

and linearization plane k
B Number of boundary element sides
bi Lower bound internal equilibrium local equality vector
bi,global Lower bound internal equilibrium global equality vector
bd Lower bound discontinuity equilibrium local equality vector
bd,global Lower bound discontinuity equilibrium global equality vector
bb Lower bound boundary equilibrium local equality vector
bb,global Lower bound boundary equilibrium global equality vector
by Lower bound yielding local inequality vector
by,global Lower bound yielding global inequality vector
bx Body force in x direction
by Body force in y direction
Ck Yield linearization coefficient with respect to shear stress τxy and linearization

plane k
Dk Yield linearization strength of linearization plane k
c Objective coefficient vector in linear programming problem, in the case of the

linear fractional program, it is the numerator objective function
c Cohesive strength of material
ce local objective function vector for element e
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cd local objective function vector for discontinuity d
cglobal Global objective function vector for the upper bound problem d
d Denominator objective coefficient vector in linear fractional program
D Number of element discontinuities
E Number of elements
F generic yield function
le,i Length of an element e side .
N generic flow function
N1−3 Generic linear shape functions 1-3, used for element velocity field interpola-

tion for the upper bound and element stress interpolation for the lower bound
Pe Power dissipation in an element e
Pd Power dissipation in a discontinuity d
Pglobal Power dissipation globally by both elements and discontinuities
p Linearization polygon order
Qe Load on element e
Qlb Lower bound collapse load
Qub Upper bound collapse load
R Radius of mohr stress circle
T Stress transformation matrix
t Out-of-plane thickness of elements or linear fractional transformation variable
ui Horizontal velocity degree of freedom for node i for the upper bound
vi Vertical velocity degree of freedom for node i for the upper bound
ue Upper bound velocity vector degree of freedom for element velocities
ud Upper bound velocity vector degree of freedom for discontinuity velocities
up Upper bound velocity vector for the loaded points p
W Work done, either interior or exterior
x Generic programming design vector
y Linear fractional transformation design vector

Table 1: Latin notations

α Linear fractional problem numerator constant
αk Angle of linearization plane k
β Linear fractional problem denominator constant
β Generic stress vector
βglobal Global vector of stress degrees of freedom
βi Stress vector for node i
β j,i Stress vector for element j, node i
ε Strain
ε̇ Strain rate
φ Internal angle of friction
γ Upper bound load multiplier or for the lower bound unit density
λ Lower bound load multiplier, or upper bound plastic multiplier degree of
λ Vector of upper bound plastic multiplier degrees of freedom
λ̇ Upper bound plastic multiplier rate
µ Yield linearization polygon order constant
ω Lower bound load proportionality factor
σn Stress normal to plane n
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σn,d Stress normal to discontinuity d
σx Horizontal normal stress
σy Vertical normal stress
τn Stress tangential to plane n
τn,d Stress tangential to discontinuity d
θd Angle of discontinuity d
θb Angle of boundary b

Table 2: Greek notations
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1 Introduction Robusness of masonry structures by limit analysis

1 Introduction
In the field of structural robustness, significantly less research has been conducted on masonry
structures compared to reinforced concrete and steel structures. In Europe considerations on
structural robustness of masonry structures are mainly covered by EN1991-1-7, whereas for
structures of materials such as reinforced concrete and steel additional information and require-
ments are stated in their material specific codes meaning that guidance for the designing en-
gineer in relation to robustness of masonry from the codes is very sparse. This thesis aims to
characterize a specific thematic example of robustness experimentally as well as numerically
by performing a column-loss scenario on a masonry wall supported by two wide pillars and a
central column to be removed.

The experiment is to be done as realistically as possible, and the test object will therefore
be constructed as an inner wall would be constructed in modern masonry structures with a
load-bearing reinforced concrete beam on top of the masonry resembling the contribution from
reinforced concrete slabs resting upon the wall, two areated autoclaved concrete beams between
the pillars and the central column and unreinforced concrete below the masonry pillars to re-
semble the wall-foundation joint as realistically as possible.

Modelling structural robustness mathematically can be approached in several ways where
in this thesis, a deterministic alternative load path approach will be taken where the robustness
is quantified by the structures ability to form alternative load paths given extreme loading. The
deformational capacity and the relative size of the yielding plateau of the force-displacement
curve therefore becomes a direct measure of the robustness of the structure. To accommodate
this choice, the numerical modelling will be done based on the methodology of limit analy-
sis extremum principles where a lower bound and an upper bound program will be made based
within the framework of a discretized stress based finite element formulation, linear shape func-
tions and linear programming.

This makes the predicted loads only predictive in the case that the structure fails in a suffi-
ciently ductile manner, making the experimental study two-fold in the sense that the applicabil-
ity of limit analysis to masonry is tested by the accordance between the numerically predicted
collapse loads and the experimental collapse load, thereby indirectly quantifying the robust-
ness of the specific structural configuration by the ductility required for the limit analysis to be
applicable which combines with the ductility as a measure of the structural robustness of the
structure.

The aim of this paper is therefore to perform an experimental test testing the behavior of a
masonry wall in a sudden column loss scenario to verify alternative load paths as a structural
robustness strategy and the applicability of a developed computational tool based upon limit
analysis extremum principles.

Aarhus University 1
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2 Masonry specific structural robustness

2.1 Definition and overview of structural robustness
An overview and definition of structural robustness exploring four main robustness design
methodologies is given in Appendix E. To outline the motivation behind this paper and enhance
the readability a summary containing the main points of the structural robustness sections in
Appendix E will be provided in this section.

Structural robustness is the ability of a structure to avoid disproportionate collapse as a
consequence of an event causing local failure. The interest on the subject escalated in the wake
of the collapse incident of Ronan Point in London in 1968, where a large part of the structure
failed progressively as consequence of a gas explosion in a flat that removed a bearing facade
wall and the total collapse was out of proportion according to the event.

Figure 1: Progressive collapse at Ronan Point in 1968

Aarhus University 2
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In the years afterwards many researchers investigated methodologies to design robust struc-
tures and which structural characteristics that are of importance. Adam et al. [4] concludes
robustness of a structural system depends on the systems strength, ductility, redundancy, con-
tinuity, and the type of abnormal loading. The strength of a system depends the design and
materials. Ductility is the ability to undergo plastic deformations without rupture and is ma-
terial specific, where plastic deformations occur when a structural element have reached its
yield strength. Redundancy is a structural ability to redistribute load that originally was carried
by a failed load bearing component to other components, meaning that a redundant structure
has the availability of alternative load paths and thereby limit the spreading of failure. Lastly,
continuity is the continuous connectivity between structural elements, such as continuous re-
inforcement in the case of reinforced concrete members. Obviously, the system characteristics
are not distinct from each other, enhancing one or the other is likely to indirectly enhance the
remaining. Enhancing continuity and ductility as well as the degree of static indeterminacy of
the structural system will increase the redundancy, like a continues sufficiently ductile beam has
alternative load paths if a support is lost, as visualized by the deflection curves in figure 2 below.

Figure 2: Deflection of redundant continues beam

Designing structures with above mentioned system characteristics can be done in various
ways, where four typical approaches is Tie-force based design methods, Key element design,
Alternative load path methods, and Risk-based methods.

Tie-force based design methods
Tie-force based design methods indirectly enhance robustness of structures through prescrip-
tive rules describing minimum levels of ductility and continuity. The design methods requires
the practicing engineer to detail the structure such that structural members are mechanically
tied together in accordance with specified requirements. An example of such prescriptive rules
is the minimum tension force requirements for peripheral reinforcement in concrete slabs. In
general, Tie-force based design concepts results in robust structures, but the applicability is
heavily reliant on material type and structural detail, since providing tension capacities in some
materials is troublesome and making prescriptive rules to every structural detail and scenario is
unpractical.

Key element design
The key elements are structural elements where local failure is likely to activate progressive
collapses disproportionate to action causing the failure. The design method relies on the prac-
ticing engineers ability to identify such elements and design the element to resist the action and
hereby increase the likelihood of the structure’s survival in case of an accidental event. The ap-
proach is recommended in many codes and guidelines, but is in some countries seen a method

Aarhus University 3
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of last resort, since the method does not enhance redundancy of the structure if the element is
removed, regardless of rise in capacity.

Alternative load path methods
The alternative load path method improves the structures redundancy by designing the structure
to have adequate ability to form new load transferring mechanisms in case of local failure of
a structural element. Intuitive measurements of this ability are continuity of load bearing el-
ements, ductile junctions, as well as designing statically indeterminant systems. Compressive
arch action, catenary action, and vierendeel action are also important progressive collapse re-
sisting mechanism being activated if the boundary conditions allow them, but they can be less
intuitive to mathematically prove. Though the method is the most direct translation of system
characteristics into structural robustness measures, the approach often requires several assump-
tions and simplifications in practice which can lead to design solutions with different levels of
robustness.

Risk-based methods
Risk-based methods are based on the principles of consequence and probability of either a haz-
ard happening, damage occurring given a hazard, or extensive global damage given a hazard.
Systematic risk assessment may draw upon and implement one or more of the above methods
of design methods since they affect the eventual failure probabilities. The structural robustness
can then be quantified from the level of risk of the structure. Structural design codes at the
present time focus on structures to have safety against local failures, where risk-based methods
focus on how potential damages are sustained with an appropriately high level of safety.

2.2 Robustness methodologies within masonry structures
The system characteristics mentioned above are in general properties of any structure and the
design methods are applicable to any structure, but the effectiveness is heavily influenced on
the type of construction and its structural material. Masonry is a brittle material where little
or no plastic deformations occur and rupture occurs almost immediately after the stresses have
reached the material yielding strength, and only with little to no tension capacity further com-
plicating application of the four robustness approaches.

Figure 3: Example of horizontal ties [5] Figure 4: Example of vertical ties [5]

Tie-force based methods within masonry structures is widespread in some parts of the world.
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British and American design codes prescribe specific requirements to both vertical and hori-
zontal tie-ing force capacities, and the British code support the requirements with construction
details and design solutions, wherefrom two details are shown in figure 3 and 4. With the brittle-
ness and low tension capacity of masonry in mind one can insinuate the problems of anchorage
and effectiveness of the ties, since the individual bricks in which the ties is fastened is limited
to the friction capacity of the bed joint. Proving the effectiveness of ties on such a small scale
not to mention issues such as quality control, workmanship, shrinkage or reduction in bond be-
tween floors, mortar and walls makes the method unpractical, why the method is deemed unfit
for unreinforced masonry constructions.
Risk-based methods and key element design are both applicable to masonry structures. Design-
ing key elements raises the issue whether it enhances the robustness of a structure since its main
focus is to avoid local failure and not prevent progressive collapse given failure, like previously
mentioned. Performing risk assessment of a structure relies on loading types and performed ro-
bustness measures, and is not a direct measure to be implemented why it, accompanied by key
element design, in this paper are evaluated not be appropriate robustness measures in context of
masonry structures.
Alternative load paths in unreinforced masonry structures relies on re-mobilisation of internal
stresses by compressive arch action or compressive strut action, where the stress field bridges
over the failed component in compression. From two separate papers figures of compressive
arch action and compressive strut action are recreated below in figure 5a and 5b. Robustness of
the structure can be showed by notional element removal method, where a load bearing element
or wall piece is hypothetically removed, and the remainder is proved to bridge over the hypo-
thetical hole. For the compressive arch action to be effective and successfully redistribute load
adequate abutments capable of providing sufficient resistance against rotation, lateral and axial
movements are necessary.

The mentioned methods will all provide a masonry structure with some level of robustness.
That being said, the ability of a structure to avoid disproportionate collapse as a consequence
of an event causing local failure is not provided or enhanced using the key element methods.
Using tie-force based methods will on the other hand provide the structure with such abilities if
the tie-ing details are thoroughly made such that local failure of the anchorages are prevented.
Generalizing this method is difficult and will be unpractical due to differing scenarios with
varying material parameters and geometries. Alternative load paths are arguably the guideline
which fits the robustness definition the best. Intuitively, alternative load paths in masonry can
be proved through compressive actions, where several authors stress that a great potential of
load bearing capacity can be located, why this forms the research area of this paper.

(a) Hidden arch (b) Compressive strut action

Figure 5: Redistribution of load by alternative load paths [6][7]
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3 Experimental studies on collapse resisting mechanisms
Appendix E section E.3.2 provides a short introduction to experimental tests of masonry starting
by addressing different types of experimental setups according to Adam et al.’s [4] classification
method of experimental programs. Since this formed the base of the experiment conducted in
this paper the classification method is quickly recapped.
Adam et al. [4] divides experimental campaigns in their research study specifically focusing on
structural robustness into four categories distinguishable by geometries and complexities:

a) sub-assemblages usually formed by two beams and one or more columns.

b) frames formed by beams and columns.

c) building structures constructed solely for experimental purposes.

d) actual buildings condemned to demolition.

Each experimental setup has its own benefits. Local robustness with specific resistance
mechanisms and capacities of structural details are most likely to be tested in labs as sub-
assemblages or frames, since variable control and exact equipment is achievable and accessible
in closed environments. Introducing more variables by constructing specimens of a structure
solely for experimental purposes is often expensive and requires a large setup, but do supply
reliable test results for calibrating numerical models, though effects of specific variables can be
difficult to detect. Full scale tests of actual buildings condemned to be demolished are unique
opportunities to test global robustness herein prove the actual progressive collapse resistance
mechanisms. Test results of this experiment category can rule out or confirm specific mecha-
nisms, but will be difficult to generalize to other structures, since the outcome is a result of the
structural characteristics specific to the structure and variables are very hard to control.

In the literature study it is concluded that the rising attention of structural robustness of ma-
sonry structures has led to some testing of sub-assemblages of masonry mainly focusing on the
behaviour when subjected to impact and blast loads, which in context of structural robustness
mostly relates to the key element methods. The majority of robustness related experimental
campaigns testing masonry has been focusing on the effects of masonry as a secondary material
such as masonry infill walls.
The experimental study made in this paper is an ultimate failure mechanism test of a masonry
wall with a concrete slab beam on top. Similar total failure test on masonry is yet unseen with
tests on the effects of masonry infill walls and studies of static mechanisms of concrete struc-
tures being the nearest relatives.

Experimental studies requires purpose, precise objectives, and professional/strict execution.
Expected outcomes and proper experimental equipment fitting the campaign objectives are es-
sential as well as high quality specimens minimizing unwanted variables only blurring the ex-
perimental data. To ensure successful execution and data gathering of the experimental study
made in this paper experimental campaigns on masonry infill walls and studies of collapse re-
sisting mechanisms of concrete structures are investigated.

3.1 Experimental campaigns on masonry infill walls
The effects of masonry infill walls on load resistance of reinforced concrete frames have recently
been given attention. Among the researchers are Kai Qian and Bing Li [8], Li et al. [9], and

Aarhus University 6
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Figure 6: Experimental setups of tests on effects of concrete frame infill walls [10]

Shan et al. [10], who tested the wall type’s ability to mitigate progressive collapses. The authors
build a two-story reinforced concrete frame with four spans in one-third scale and simulated a
column removal as a progressive collapse scenario by applying loading on the center columns
of the test units. The load was applied by a hydraulic jack forcing downward displacement
controlled with a hand jack underneath by unloading step by step. A schematic of one of the
experimental setups showing types and placements of experimental equipment is shown on
above figure 6 reproduced from Shan et al. [10]. Tests was performed on structural setups of
bare concrete frames, concrete frames with full height infill walls, and concrete frames with
infill walls with window sized openings. The findings of Kai Qian and Bing Li [8] is briefly
summarized in section E.3.2 in attached Appendix E, but in general all authors find that the
infill walls provide a level of resistance against progressive collapse by behaving as equivalent
compressive struts.

3.2 Experimental campaigns on reinforced concrete
Tests of structural robustness and the vulnerability of concrete structures to progressive collapse
is a well established field of study with many experimental campaigns carried out. Researchers
testing mechanisms resisting progressive collapse are Almusallam et al. [11], Pham et al. [12],
Qian et al. [13], and Gouverneur et al. [14] to name a few.

Almusallam et al.[11] tests structural robustness of frames made of precast concrete ele-
ments a typology especially vulnerable to progressive collapse. In their experimental program
failure mechanisms do to large displacements of frames of two beams and three columns are
tested. Displacement controlled loading was applied with an actuator to the center column until
total failure without experiencing compressive arch action or catenary action. The column loss
scenario was simulated by fastening the center column to the actuator, and applying force in a
rate loading of 100 mm

s . A picture of their test setup is shown below on figure 7.
Pham et al. [12] conducted similar experimental tests on an in-situ reinforced concrete

frame setup. The center column was suspended from a supporting H-frame and loaded with
steel plates hung underneath. A quick-release device in the suspension was used to suddenly
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release the joint by a yanking rope and in this manner simulate a sudden column loss. Lin-
ear variable displacement transducers (LVDTs) were arranged along the double-span beam to
measure vertical and horizontal deformations and two slow-motion cameras at a frame rate of
240 frames per second were used to capture the in-plane deflections using marked points on
the specimens. Doing the tests the authors captured catenary action and confirms that it resists
collapse.

Qian et al. [13] simulated a loss of a corner column on an in-situ reinforced concrete frame
structure by building one-third scale test models made of two orthogonal beams spanning be-
tween three columns as shown in figure 8. The setup was loaded with hanging steel plates
placed symmetrically around the center column supported such that it could move freely in the
vertical direction, but the rotational and horizontal freedoms were partially restrained. Sudden
removal of the corner column was simulated by a developed pin support allowing for rotation
when subjected to horizontal force, which they applied with a large hammer. The response of
the system was monitored with accelerometers, LVDTs and strain gauges distributed along the
beams and corner column.

Figure 7: Almusallam et al. test setup [11] Figure 8: Qian et al. test setup [13]

Lastly, Gouverneur et al. [14] conducted experimental tests on a concrete slab strip with the
purpose of testing the load capacity associated with catenary action. As shown in figure 9 the
slab strip was spanning as a two-bay beam, where removal of the central support simulated an
accidental action. The central support consisted of two concrete spacers and two hydraulic jacks
and was removed, initially, by lifting up the slab strip to remove the spacers, and subsequently,
by slowly lowering the jacks until clearance occurred and the jacks could be removed. After
this stage displacement controlled actuators applied load until total collapse. Multiple LVDTs,
strain gauges, potentiometers and dial gauges were located at various points in order to record
vertical and horizontal displacements at several locations along the slab length. The measured
horizontal compression forces in load-cells at the end support allowed to monitor the tensile
catenary forces, which successfully was observed.

3.3 Discussion of experimental setups
The experimental campaigns mentioned above tested progressive collapse resisting mechanisms
using different experimental approaches each proving to be effective in their specific setup. Dis-
placement controlled hydraulic jack has proven to be a common way of applying load, though
it is not a direct simulation of sudden removal of a supporting element, but it allows effects
from unknown variables such as dynamic amplification factors to be at a minimum, while also
supplying load-displacement data. Hanging dead weight is a simple but widely used to apply
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Figure 9: Gouverneur et al. test setup [14] Figure 10: Expected compressive arch and cate-
nary action

load, which neglects the needs of a large steel frame structures and mounted actuators. This
type of setup does however require additional monitoring arrangements in forms of accelerom-
eters, LVDTs, and strain gauges or like Pham et al. in [12] with slow motion cameras, since
load-displacement data is not directly supplied. Strain gauges however, does not prove to be
very useful when it comes to brittle materials such as masonry, since they provide strains based
on deformation and does not distinguish between cracks and sliding and elastic elongation.
The experimental campaigns test progressive collapse resisting mechanisms relative to com-
pressive arch action and catenary action sketched on figure 10. Tests on concrete frames with
masonry infill walls reveal the infill acting as compressive strut, and tests on in-sito concrete
with continues reinforcement shows catenary action when beams undergo large displacement.
Catenary action in beams and tensile membrane action in plates are of great importance when
assessing the load capacity of concrete structures. Activation requires the structure to undergo
large displacements and to have sufficient boundary conditions, which can result in significant
increase of structural load carrying capacity and hence the robustness of the structural system
[14].

In the experiment conducted in this paper sudden column loss is simulated in a masonry
wall with two window sized openings and a concrete slab beam on top to test the mechanisms
to mitigate progressive collapse. The setup is shown in below isometric in figure 11. Based
on above experimental campaigns the expected mechanisms are compressive arch action in the
masonry deep beam and catenary action in the reinforced concrete slab post failure of the ma-
sonry. The outcome of the test will be identification of the failure resisting mechanisms, and will
be done with a digital image correlation camera system measuring displacements and strains,
which Pham et al. did successfully in [12]. Due to the feasible lab facilities, the wall specimen
is setup underneath an existing steel frame allowing controlled boundary conditions and a strict
environment minimizing unwanted variables.The collapse load will be made with a hydraulic
jack mounted on steel frame allowing full visibility for the camera system.
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Figure 11: Isometric of experimental setup
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4 Computational modelling of masonry

4.1 Introduction and overview
A comprehensive overview of the mechanical behaviour of masonry and modern approaches
to the computational modelling of masonry is given in Appendix E. To keep continuity and
readability of this paper, the main points will be we outlined here. The mechanical behavior
of masonry is defined by the properties of the blocks and by the mortar as well as the joint
interaction of the two. In general, the failure modes of masonry are describable by five different
mechanisms as are listed below, and illustrated in figure 12, [15].

(a) Block-mortar interface tensile failure

(b) Block-mortar interface shear sliding failure

(c) Diagonal masonry shear-compression failure

(d) Crushing failure of Masonry blocks

(e) Block and mortar tensile cracking normal to head joints

Figure 12: Masonry failure modes [15]

The purpose of a numerical tool is to capture these five yielding phenomena to a sufficient
accuracy. The choice of computational tool comes down to the trade off between speed and the
complexity required where the authors believe it recommendable to choose the simplest model
with sufficient complexity. As outlined in the literature review Appendix E computational mod-
elling of masonry is a fairly demanding task and as the issue at hand is that of structural robust-
ness and by extension failure of large geometries, an efficient and less demanding approach is
needed.

Such an approach is developed by Sloan[1] where he models Mohr-Coulomb materials
within the framework of stress based finite elements and lower bound limit analysis. Sloan
developed the approach for geotechnical problems however it has been applied to masonry by
Sutcliffe [16] where he applies it to shear walls and Milani [17] where he applies it to deep
beams. This approach will be further extrapolated upon and applied to the test specimen for the
robustness test in section 5. An upper bound finite element model will also be applied based on
a Mohr-Coulomb criteria also originally developed by Sloan which will be outlined in section
6. The lower and upper bound frameworks works by formulating the general problem math-
ematically as an optimization problem where the static and kinematic conditions are equality
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constraints for the lower and upper bound, respectively and the yielding conditions are inequal-
ity constraints. The optimization problem is then formulated as a linear one by linearizing the
yielding conditions and the maximum and minimum load multiplier is found for the lower and
upper bound solution, respectively.

4.2 General limit analysis
To give some context to the discussion of how to apply limit analysis to masonry structures,
a brief overview of the general principles of limit analysis will be given in this section. The
theory is mostly based on lecture notes [18] given on plasticity theory during various courses at
Aarhus University. When quantifying structural behavior, three types of equations or relations
are available, these are the static, kinematic or physical conditions which each describe some
mechanical relationship inter-independently of each other. The static conditions is basically
describable as inner equilibrium and outer equilibrium of a body and thereby describes the re-
lation between an inner stress field and some outer applied stress or load. If an inner stress field
is equilibrated with an outer applied stress it is said to be a statically admissible stress field.
This stress field says nothing about the deformational behaviour of the body which is where the
kinematic conditions enter. These conditions refer to the relationship between some applied dis-
placement and the strains of the body which must satisfy the kinematic or geometric conditions,
which similarly to earlier - says nothing about the inner stresses causing these strains, rotations,
deformations or curvatures that arises from the applied displacement only that the strain field
is compatible which a bit more descriptively means that the strain field is consistent. These
two types of conditions are material independent, that is they are generic relationships to model
structural behaviour disregarding material info, which is where the physical conditions apply.
These conditions are basically the relationship between the stress state and yielding behavior
and the constitutive relationship between stress and strain increments.

Limit analysis is the application of a non-total amount of said conditions for structural anal-
ysis thereby creating non-exact solutions. These solutions are based upon the extremum prin-
ciples(lower and upper) which states that, a solution can be obtained without the fulfillment of
all three of the basic conditions required for an exact solution: physical, kinematic, and static
but rather, with only two of them which in practice is very convenient. Combining physical and
static conditions forms the lower bound solutions and combining the physical and kinematic
forms the upper bound solutions. Within each an infinite amount of solutions satisfying the
two conditions can be found. As the two different solution types combine a different subset of
conditions, if both an upper bound and a lower bound solution returns the same load multiplier,
all the three basic types of conditions are met and the solution is exact, this is however rarely
achievable.

As mentioned in above paragraph, both extremum principles applies the physical conditions,
which as mentioned is the relationship between stress state and yielding behavior. In equative
language, this is usually expressed as some function F of the stress tensor σi j which determines
yielding when it equates to zero:

F(σi j) = 0 (4.1)

Similarly, as mentioned earlier the physical conditions also encompass the constitutive equa-
tions for a material meaning the relationship between stresses and strains. For plastic strain
increments, this equation is called the flow rule, and is usually written as the plastic strain in-
crement ∆ε̇ equals the derivative of some flow function N(σi j) with respect to the change of the
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stress tensor at yielding point multiplied a plastic multiplier rate λ̇ .

∆ε̇ = λ̇ ·
∂N(σi j)

∂σi j
(4.2)

Applying the flow rule in conjunction with the basic kinematic equations form the theoreti-
cal base of the upper bound solutions, while applying the yield rule to the basic static equations
forms the theoretical base for the lower bound solutions. The basic kinematic equations are
known as the compatibility equations which state the relationship between inner strains and the
geometrical boundary conditions which basically state the relationship between strains and de-
formations. For the case of plane strain and a deformation field u,v, the relationship between
deformation and strains is:

εx =
∂u
∂x

(4.3)

εy =
∂v
∂x

(4.4)

γxy =
∂u
∂y

+
∂v
∂y

(4.5)

Whereas the relationship between the inner strains e.g the compatibility equations which ensure
no gaps or overlaps of the strain field are equal to below equation:

∂ 2εx

∂ 2y
+

∂ 2εy

∂ 2x
=

∂ 2γxy

∂y ·∂x
(4.6)

Upper bound analysis is now done by finding a mechanism that obeys above kinematic criteria
as well as the flow rule.

The static conditions required for the lower bound solutions are as mentioned internal equi-
librium and equilibrium with outer traction stresses and the body stresses. Internal equilibrium
in tensor format reads:

σi j, j +bi = 0 (4.7)

Which in the 2D case of a material with the unit density γ and the y-axis as the gravitational
direction translates to:

∂σx

∂x
+

∂τxy

∂y
= 0 (4.8)

∂σy

∂y
+

∂τxy

∂x
= γ (4.9)

τxy = τyx (4.10)

Outer equilibrium is similarly satisfied by the stress state at a boundary equaling:

∂σx

∂x
+

∂τxy

∂y
= px (4.11)

∂σy

∂y
+

∂τxy

∂x
= py (4.12)

Where px is the component of the applied traction vector in the x-direction and py is the
y-directional component. Lower bound analysis can now be applied by for a loading case find-
ing a stress field that satisfies above equilibrium criteria as well as the yield rule for the given
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material.

Having now summed up the equations forming the basics of limit analysis, some require-
ments are to be met for limit analysis to be applicable. First of all is the small strain require-
ments which basically requires that the strain field must be sufficiently small for the geometric
changes as a result of the strains not to significantly change the geometry of the initial problem.
Secondly, the yielding function must be independent of the strain/strain rate and conversely the
strain rate should not change the yielding function. This slightly confusing statement means
that the material should be perfectly plastic or rigid plastic and thereby no plastic hardening or
softening should occur during yielding. For the material, the yielding rule is also required to
form a convex surface and the plastic constitutive relationship, that is the yield rule, must be
associative meaning the flow function N(σi j) must equal the yielding function F(σi j).

4.3 Applying limit analysis to masonry
All these principles, conditions and requirements do not necessarily apply smoothly to masonry
structures. First of all, there is the issue of anisotropy, as stated in the Appendix E section E.4.1 :

"Masonry is, due to the combination of blocks and mortar and the bond pattern of the two
an anisotropic and heterogeneous material. The anisotropic characteristics of masonry exists
elastically in the sense that the stress-strain relationship differs with the respect to orientation
and in regards to strength as the strength properties also differs with respect to orientation. Sim-
ilarly, there is a significant difference between tensile and compression strengths complicating
even further with compressive strength of the blocks being significantly higher. Furthermore,
anisotropy is also observed in the brittleness of the material that is the post peak response differs
with respect to load orientation as well. This is illustrated in below figure 13, [19] which shows
different failure modes with respect to load inclination".

Figure 13: Masonry response with respect to orientation

Several things of the above is interesting. First of all, the anisotropy and heterogeneity re-
quires the physical conditions of the yield rule to either somehow account for the joint-brick in-
teractions or the joints and bricks must be modelled separately. Secondly, the brittle-anisotropy
is critical, as the requirement for a no plastic hardening or softening is hard to meet. With
respect to figure 12, there are five basic failure modes of masonry with each having different
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levels of ductility. Generally speaking, the compression or tensional modes of failure of a, d
and e are quasi-brittle [15] whereas the shear related ones of b and c are somewhat ductile. This
means, that for a structural element to be rigorously describable by limit analysis the global
failure behavior must be generally related to some shear failure. Above point can be general-
ized into that the ductility of masonry is a function of the stress state imposed on it meaning
that this requirement of perfect plasticity can only be met when the masonry in question acts a
specific type of structural element. An obvious example here is when masonry acts as a shear
wall which is tested in [16] where Sloan’s lower bound elements are applied to masonry with
the addition of a joint failure criteria, where the experimental results shows good accuracy for
the lower bound model when the normal compression stress is at sufficiently high levels and the
failure is governed by mode c, in figure 12.

Another type of structural element is that of the deep beam which is the subject of this
thesis. The context of interest is that given some local column failure a masonry panel might
have to act as a deep beam with the question how much of a load can the element now handle.
If one views it at as a Bernoulli beam element the result is likely not to be very much and
probably not enough given that it previously where to act as an element in more or less pure
compression along the strong axis of the element and not in longitudinal bending. This forms
the primary motivation of the experimental campaign for the thesis and the goal is thereby to
implement the extremum principled numerical models and to perform a deep beam test with
the inclusion of sudden deep beam bending action due to column loss, where the ductility level
and the level of confidence of which these limit analysis principles can be applied can be tested.
Some other requirements are small deformations, which for masonry is not an issue [16] and a
convex yielding surface, which again for masonry is a non issue as it is generally describable
by a Mohr-Coulomb yielding criteria.

4.4 Material yielding model
The two models adopted, namely the lower and upper bound limit analysis finite element mod-
els revolve around a yield criteria formulation and then static or kinematic relations for the
lower or upper bound element respectively. These static and kinematic conditions are formu-
lated within the principles of perfect plasticity and as such are not dependent on the specific
material except for the viability of applying perfect plastic behaviour to a material, which for
masonry as argued, is not entirely clear when and where this assumption is applicable. The
yield rule for the two models are however the same only with differences arising accompanying
the linearization of the yield rule as strict upper and lower bound properties must be preserved
as the function is linearized.

Masonry is a granular material with the compressive strength massively exceeding the ten-
sile strength and as such can be appropriately characterized as a Mohr-Coulomb material, which
in its basic state assume failure to occur in shear with the shear strength linearly proportional by
the internal angle of friction to the normal stress applied. Due to the composite and anisotropic
nature of masonry no unified failure surface is readily available for use and several possibilities
are available with the main being some homogenization process of a representatively sized unit
or by micro-modelling the bricks and joints separately with each of the methods having their
strengths and weaknesses. In this report, a micro-modelling approach will be taken where fail-
ure criteria is created for joints and bricks individually.
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The finite elements to be formulated are two-dimensional and operate with stresses as de-
grees of freedom in the case of the lower bound element and plastic multipliers as degrees of
freedom in the case of the upper bound. As the elements are in a plane stress state, a Mohr-
Coulomb formulation with respect to two perpendicular normal stresses σx and σy and a single
shear stress τxy needs to be formulated for the bricks whereas for the joints which due to their
geometrical configuration of having much smaller thicknesses than lengths can be modelled
with a normal stress with respect to the joints perpendicular plane and a tangential shear stress
with respect to the joints tangential plane. The basic equation for yielding by Mohr-Coloumb
friction in plane stress can be derived as follows: Letting the normal stress being negative in
compression, the shear stress that causes yielding equals:

τ = c−σ · tan(φ) (4.13)

Figure 14: Mohr-Coulomb failure

With τ being the shear stress on the failure plane, c the cohesion, σ the normal stress on the
failure plane and φ the angle of internal friction. The situation is graphically sketched in figure
14 for a two dimensional stress state in yielding defined by the principal stresses σ1 and σ3.

Rephrasing the stresses with respect to the radius R and the center σm of the stress state
circle yields:

τ = R · cos(φ) σ = σm +R · sin(φ) (4.14)

Inserting equation 4.14 into 4.13 and multiplying the equation with cos(φ) returns:

R · cos2(φ) = c · cos(φ)− (σm +R · sin(φ)) · sin(φ) (4.15)

Evaluating the parenthesis, and moving all R’s to the left returns:

R · cos2(φ)+R · sin2(φ) = c · cos(φ)−σm · sin(φ) (4.16)

As cos2(φ)+ sin2(φ) equates to 1, the expression collapses to:

R = c · cos(φ)−σm · sin(φ) (4.17)
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Now, assuming a plane stress state with a stress vector β = [σx,σy,τxy] and applying that

for such a stress state the radius of Mohr’s circle equals R =
√

1
2 · (σx−σy)2 + τ2

xy, and apply-

ing σm = 1
2 · (σx +σy), equation 4.17 evaluates to equation 4.18 by squaring both sides of the

equation and multiplying both sides by two.

(σx−σy)
2 +2 · τ2

xy = (2 · c · cos(φ)− 1
2
· (σx +σy) · sin(φ))2 (4.18)

Above equation 4.18 statutes the Mohr-Coloumb yield rule for the plane stress element.
Below equation 4.19 formalizes equation 4.18 by formulating it in the canonical form of a yield
rule, where yielding occurs when the function F equals zero:

F(σx,σy,τxy) = (σx−σy)
2 +2 · τ2

xy− (2 · c · cos(φ)+
1
2
· (σx +σy) · sin(φ))2 = 0 (4.19)

equation 4.19 equates to the equation of a circle on the form x2 + y2 = R2 with:

x = (σx−σy), y = 2 · τxy, R = (2 · c · cos(φ)+
1
2
· (σx +σy) · sin(φ). (4.20)

The above equation 4.19 is nonlinear and as the problem is to be formulated as a linear pro-
gramming problem, the circle formulated by said equation is to be linearized. The linearization
is done somewhat differently for the lower and upper bound solutions as they are to be strict
bounds and the area defined by the linearized polygon can in the case of the lower bound not
protrude the circle and in the case of the upper bound cannot extrude the circle area. These
specific linearizations will be discussed in the sections regarding the formulation of the upper
and lower bound elements. A graphical example of the linearization of equation 4.20 with 12
vertices is shown in figure 15.

Figure 15: Linearization example

Due to their plane nature, joints are modelled as zero thickness elements and as such does
not require linearization as they can be described by equation 4.13, where the generetic stress
variables τ and σ are the replaced by the stress in the specific plane n of the joint τn and
σn by projecting the stress state into the plane of the specific joint with an angle θ by the
transformation as graphically shown in figure 16:
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σn = sin2(θ) ·σx + cos2(θ) ·σy− sin(2 ·θ) · τxy (4.21)

τn =−
1
2

sin(2 ·θ) ·σx +
1
2

sin(2 ·θ) ·σy + cos(2 ·θ) · τxy (4.22)

Figure 16: Plane stress rectangle

The failure surface of the joints can thereby be mathematically formulated as in equation
4.23 where the index j represents the properties of joint j and index n the stress state in the
plane defined by joint j. The formulation is graphically shown in figure 17.

τn = c j−σn · tan(φ j) (4.23)

Figure 17: Mohr-Coulomb yield line for a planar joint

Having now described the general concepts of limit analysis, the general adopted yielding
behavior of the chosen material, the numerical formulation of the static conditions and kine-
matic conditions as well as the numerical implementation of the physical conditions will now
described in the next two sections.
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5 The lower bound finite element
For the lower bound elements the requirements, as previously stated, for a viable solution are:

(a) Static conditions, equilibrium most hold within the entire element for any arbitrary part of
the body and boundary stresses must be in equilibrium with external loads and reactions,
that is they must be equal to each other.

(b) Physical conditions, the yielding rule is obeyed continuously throughout the body.

To satisfy the static conditions in a manner suitable for numerical formulation Sloan [1]
suggests a discretization of a body into triangular plane strain elements with the stress state as
the degrees of freedom. Stresses are linearly interpolated within the elements thereby satisfying
equilibrium continuously by satisfying it in all nodes. The elements differentiates from tradi-
tional finite elements in the sense that each node is unique to its parent element meaning that
several triangles sharing a nodal coordinate will each have its own unique node associated with
that pair of coordinates. The basic geometrical layout of these finite elements is illustrated in
below figure:

Figure 18: Sloan finite elements

As can be seen in figure 18 each finite element has three nodes each containing three stress
degrees of freedom. Thereby for a discretization of E number of elements, there will be 9 ·E
degrees of freedom.

Equilibrium is then satisfied by enforcing three types of equilibrium equations:

(a) Internal equilibrium, nodal stresses are linearly interpolated into the centroid of the in-
dividual triangular elements and equated the body forces acting upon the individual ele-
ment.

(b) discontinuity equilibrium, equilibrium is satisfied continuously in the discontinuities of
the elements or one can say the interfaces between two elements, by enforcing it dis-
cretely in the two nodal pairs defining the interface and by the linear stress interpolation
equilibrium is satisfied throughout the entire interface.

(c) Boundary equilibrium, equilibrium equations are created for all boundaries with respect
to static loads applying force to the individual discretized boundary. Also, the bound-
aries which are subject to load optimization are equated the product of the load multi-
plier degree of freedom and the local load proportionality factor and supported degrees
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of freedom are removed from the boundary system of equations as they need not be in
equilibrium with some exterior load.

The physical conditions are to be enforced by requiring every unique node to obey a Mohr-
Couloub yielding model f (σ) ≤ 0, this will be further expanded upon in section 5.6. Having
a set of equilibrium equations to be satisfied and a set of yielding equations to be obeyed al-
lows the lower bound stress state problem to be formulated as an optimization problem. As the
equilibrium equations are linear, and the yielding criteria can be linearized, the lower bound
problem can be formulated as a linear programming problem with the equilibrium equations
acting as equality constraints and the yielding inequalities acting as inequality constraints. De-
noting λ as the load multiplier and β as the global stress state vector, the optimization problem
can be formulated as in equation 5.1 where the A matrices are the linear coefficient constraint
matrices, β is the stress vector for the system and λ is the load multiplier:

Max λ subject to:

Ad ·β = 0 Ai ·β = bi Ab · [β ,λ ] = bb Ay ·β ≤ by (5.1)

where the subscript d refers to discontinuities, i internal, b boundary and y yielding.
The formulation of the individual equalities and inequalities will be outlined in below sec-

tions:

5.1 Internal equilibrium
To satisfy the internal equilibrium, the following two basic equilibrium equations for respec-
tively x-directional equilibrium and y-directional equilibrium must be continuously satisfied
within the domain of the elements.

∂σx

∂x
+

∂τxy

∂y
= bx

∂σy

∂y
+

∂τxy

∂x
= by (5.2)

The stress state in the element varies linearly according to:

σx(x,y) =
3

∑
i=1

Ni(x,y) ·σx,i σy(x,y) =
3

∑
i=1

Ni(x,y) ·σy,i τxy(x,y) =
3

∑
i=1

Ni(x,y) · τxy,i (5.3)

Where Ni refers to the linear shape function related to local node i. The shape functions are:

N1(x,y) =
1

2 ·Ae
· ((x2 · y3− x3 · y2)+ y23 · x+ x32 · y) (5.4)

N2(x,y) =
1

2 ·Ae
· ((x3 · y1− x1 · y3)+ y31 · x+ x13 · y) (5.5)

N3(x,y) =
1

2 ·Ae
· ((x1 · y2− x2 · y1)+ y12 · x+ x21 · y) (5.6)

Where Ae is the element area, xi and yi is the i’th nodes x and y-coordinate, respectively and
the xi j’s and yi j’s equal xi− y j and yi− y j:

y12 = y1− y2 y23 = y2− y3 y31 = y3− y1

Aarhus University 20



5 The lower bound finite element Robusness of masonry structures by limit analysis

x21 = y2− y1 x32 = x3− x2 x13 = x1− x3

Applying above equation 5.3 and equations 5.4 - 5.6 to equation 5.2, denoting the i’th nodes
stress vector

[
σix σiy τixy

]
as βi such that:[

β1 β2 β3
]
=
[
σ1x σ1y τ1xy σ1x σ2y τ2xy σ3x σ3y τ3xy

]
and vectorizing yields:

1
2 ·Ae

·
[

y23 0 x32 y31 0 x13 y12 0 x21
0 x32 y32 0 x13 y31 0 x21 y12

]
·

β1
β2
β3

=

[
bx
by

]
(5.7)

Thereby, two equilibrium constraints are created for each finite element, with the first row in
equation 5.7 representing x-direction equilibrium and the second row y- directional equilibrium.
Above equation 5.7 shows that the equilibrium constraint matrix A for element i and the vector
containing the equalities b equals:

Ai =
1

2 ·Ae
·
[

y23 0 x32 y31 0 x13 y12 0 x21
0 x32 y32 0 x13 y31 0 x21 y12

]
bi =

[
bx
by

]
(5.8)

5.2 Finite element discontinuity equilibrium
In the element interfaces, the stress field is statically admissible if there exists equilibrium be-
tween the shear and normal stresses from the parent elements acting on the plane.

Figure 19: Interface equilibrium (left, general equilibrium (right, discretized equilibrium

Above figure 19 shows to the left the continuous equilibrium to be satisfied and to the right
the equilibrium to be discretely satisfied as allowed by the linear stress field distribution. The
equilibrium is enforced by satisfying equilibrium between the nodal pairs defining the disconti-
nuity from elements i and j, that is equilibrium between the nodes sharing the same coordinates
from two elements. For the example sketched in figure 19 the following four relations have to
be enforced:

σn,i,3 = σn, j,2 τn,i,3 = τn, j,2 σn,i,2 = σn, j,1 τn,i,2 = τn, j,1 (5.9)

To satisfy these equations the general stress coordinates of (σx,σy,τxy) have to be rotated
into the plane defined by the discontinuity d. This is done by trigonometric relations with the
angle θd of the inclined plane d. For a stress rectangle in plane stress state, the normal and shear
stress on any given plane as illustrated in figure 16 and is formulated as shown in equation 4.21
4.22 and :
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Vectorizing equation 4.21 and 4.22 constructs the following stress transformation matrix T
from node i with respect to interface d:[

sin2(θd) cos2(θd) −sin(2 ·θd)

−1
2

sin(2 ·θd)
1
2

sin(2 ·θd) cos(2 ·θd)

]
·

σx,i
σy,i
τxy,i

=

[
σn,d
τn,d

]
(5.10)

T(θd) =

[
sin2(θd) cos2(θd) −sin(2 ·θd)

−1
2

sin(2 ·θd)
1
2

sin(2 ·θd) cos(2 ·θd)

]
(5.11)

Applying above equation 5.11 to equation 5.9 and denoting the nodal stress vectors as βu,v
where u represents the element index e.g. i or j and v represents the local node ID e.g 1, 2
or 3 -returns the following vectorial expression for equilibrium at interface d, for the example
illustrated in figure 19:

[
T(θd) −T(θd) 0 0

0 0 T(θd) −T(θd)

]
·


βi,2
β j,1
βi,3
β j,2

=


0
0
0
0

 (5.12)

Above equation 5.12 shows that the constraint matrix Ad for discontinuity d and the vector
containing the equalities equals:

Ad =

[
T(θd) −T(θd) 0 0

0 0 T(θd) −T(θd)

]
bd =


0
0
0
0

 (5.13)

5.3 Boundary equilibrium
The boundary equilibrium works similar to the discontinuity equilibrium in the sense that the
nodal stress vectors are transformed by transformation matrix T (θ) into the plane b of the
boundary. These nodal stresses must equal the nodal outer forces affecting said nodes, and by
the previous argument of linear stress interpolation - equilibrium is satisfied continuously by
satisfying it discretely in the corner nodes. The situation is sketched in below figure 20:

Figure 20: Boundary equilibrium

Like the implementation of equation 5.10 to equation 5.9 in above section, the local con-
straint matrix for boundary b is expressible by below equation 5.14 with βi j being the i’th
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elements j’th nodes stress vector and with the addition of the load multiplier λ . This makes
the local boundary systems of equation with respect to the angle of the boundary θb as in equa-
tion 5.14, where ω describes the load proportionality of the applied load to be optimized on
boundary b.

[
T(θb) 0 −ω

0 T(θb) −ω

]
·

βi,1
βi,2
λ

=


qb,i,1
tb,i,1
qb,i,2
tb,i,2

 (5.14)

Ab =

T(θb) 0 −ω

0 T(θb) −ω

 bb =


qb,i,1
tb,i,1
qb,i,2
tb,i,2

 (5.15)

The inclusion of the load multiplier λ directly in the boundary constraint matrix is where this
implementation diverges from the original Sloan implementation. Here the load multiplier is
implemented directly into the boundary constraint matrices whereas in the original formulation,
a separate objective function vector was defined for optimizing the non-static load. This new
approach has several advantages, it allows the possibility of optimizing both shear and normal
loads simultaneously as well as allowing the user to force the stress acting on the loaded sides
to stay in a predefined proportional pattern whereas for the original implementation, the linear
program was at its own will in the sense that it was allowed to highly stress some areas and not
others on a loaded boundary. This Sloan boundary formulation is good for a single local load
however, for more practical problems this is rarely the case and therefore the methodology has
been slightly expanded. The situation is sketched in below figure 21 and stated in equation 5.16
where ω are vectors controlling the load orientation and proportionality.

[
T(θb) 0 −ω

0 T(θb) −ω

]
·

βi,1
βi,2
λ

=


0
0
0
0

 (5.16)

Figure 21: Load multiplier on boundary
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5.4 Assembling the equality constraint matrices
Having described the formulation of the three individual types of local constraint matrices and
equality vectors, all that is left for the formulation of the global constraint matrix is to calculate
all the local ones by looping over all the elements for the element constraint matrices, all the
finite element interfaces for the discontinuity equilibrium matrices and all the boundaries for
the boundary equilibrium matrices. The local degrees of freedom have to have assigned global
ones and all the equilibrium equations are concatenated. This can be formulated as in below
equation 5.17 to 5.21 where E denotes the amount of elements, D the amount of interfaces, and
B the amount of boundaries. For the global concatenation a zero vector is added vertically to the
interface and elements constraint matrices as they do not refer to λ they have one less degree of
freedom than the global boundary matrix:

Ad,global =
D

∑
d=1

Ad (5.17)

Ai,global =
E

∑
i=1

Ai (5.18)

Ab,global =
B

∑
b=1

Ab (5.19)

The global equality constraint matrix is now constructed by vertically concatenating the above
three mentioned matrices.

Aglobal =

Ad,global
Ai,global
Ab,global

 (5.20)

The vector of equalities is assembled similarly:

bd,global =
D

∑
d=1

bd (5.21)

bi,global =
E

∑
i=1

bi (5.22)

bb,global =
B

∑
b=1

bb (5.23)

bglobal =

bd,global
bi,global
bb,global

 (5.24)

The global system of equality constraint equations now read, where βglobal is the vector
containing all the global stress variables and λ is the load multiplier:

Aglobal ·
[

βglobal
λ

]
= bglobal (5.25)

Aarhus University 24



5 The lower bound finite element Robusness of masonry structures by limit analysis

5.5 Constraint matrix example
To demonstrate the lower bound stress finite element framework, a simple example is intro-
duced. Below figure 22 shows the discretization. A rectangle is divided into four elements,
twelve nodes and with three internal interfaces and six outer boundaries. The system is loaded
at one global point shown by a red arrow and supported at three points shown by blue arrows.
The system has the following amount of linear equalities:

Figure 22: Lower bound example illustration

1. internal equilibrium equations: 8, each element imposes two equilibrium constraints

2. internal interface equilibrium equations: 12, each interface imposes four equilibrium con-
straints

3. boundary equilibrium equations: 18, each boundary imposes four equilibrium constraints,
however the supported nodes are not to be in equilibrium with some prescribed exterior
force and as such do not impose a constraint. For illustrative purposes, all the stress
degrees of freedom of the supported nodes are restrained whereas in reality only one
normal stress component and the tangential stress will be supported. This configuration
is also possible in the model and makes the equilibrium equations not to be removed but
the influence of the restrained degrees of freedom removed. As there are three supported
nodes, the amount of constraints are 18 due to 6 boundaries · 4 constraints - 3 nodes · 2
constraints.
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The interface constraint matrix is created as shown in below equation 5.26. To compress the
system of equation, each zero entry is of the same size of T(θd,i) that is a two by three, meaning
each row in the below matrix in fact represents two constraints.

Ad,global =
0 T(θd,1) 0 −T(θd,1) 0 0 0 0 0 0 0 0 0
0 0 T(θd,1) 0 −T(θd,1) 0 0 0 0 0 0 0 0
0 0 0 T(θd,2) 0 0 −T(θd,2) 0 0 0 0 0 0
0 0 0 0 0 T(θd,2) 0 T(θd,2) 0 0 0 0 0
0 0 0 0 0 0 T(θd,3) 0 0 −T(θd,3) 0 0 0
0 0 0 0 0 0 0 T(θd,3) 0 0 −T(θd,3) 0 0


(5.26)

The above matrix Ad,global satisfies below equation where βi is the i’th nodes stress vector:
βi =

[
σx,i σy,i τxy,i

]
:

Ad,global ·
∣∣β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 λ

∣∣T = bd,global (5.27)

The boundary constraint matrix is created as shown in below equation 5.28 . For each local
node in a boundary that is not being supported, a constraint is created equaling the local nodes
stress vector with respect to the boundary angle to the outer load applied. For the two nodes
in contact with the load to be optimized (node 6 and 8) there is added a ω at the end column
associated with the load multiplier degree of freedom. As the load is the same on both nodes,
ω =

[
1 0

]T To compress the system of equations, each zero entry is of the same size of T(θb,i)
that is a two by three, meaning each row in the below matrix in fact represents two constraints.

Aboundary,global =

0 T(θb,5) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 T(θb,2) 0 0 0 0 0 0 0 0
0 0 0 0 0 T(θb,2) 0 0 0 0 0 0 −ω

0 0 0 0 0 0 0 T(θb,3) 0 0 0 0 −ω

0 0 0 0 0 0 0 0 T(θb,3) 0 0 0 0
0 0 0 0 0 0 0 0 0 T(θb,4) 0 0 0
0 0 0 0 0 0 0 0 0 0 T(θb,6) 0 0


(5.28)

The above matrix Ab,global satisfies below equation where βi is the i’th nodes stress vector:
βi =

[
σx,i σy,i τxy,i

]
:

Ab,global ·
[
β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 λ

]T
= bb,global (5.29)

as there are no exterior loads besides the one to be optimized, both the boundary and inter-
face vector of equalities is zero.

bb,global = 0 bd,global = 0 (5.30)

The global element constraint matrix is just a diagonal matrix of the local individual matrix.
The vector of equalities has the values of the gravitational load of the material with t being the
thickness of the media and γ the density of the media.
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Ai,global =


Ai,1 0 0 0

0 Ai,20 0 0
0 0 Ai,3 0
0 0 0 Ai,4

 bi,global =



0
γ · t
0

γ · t
0

γ · t
0

γ · t


(5.31)

The global sub matrices outlined above can now be assembled as done in equation 5.17
and 5.21 and put into equation 5.25. This concludes the equality constraints, the inequality
constraints will be described in the following section.

5.6 Yielding constraints
The goal of the yielding constraints is to form a set of linear inequality constraints that disallows
the stress state to violate the yielding conditions. As earlier stated in section 4.4, for the yield-
ing of the bricks the nonlinear inequality 4.19 is to be linearized and as such made into a set of
linear functions of σx, σy and τxy in the form of: Ak ·σx+Bk ·σy+τxy ·Ck ≤Dk where Ak,Bk,Ck
and Dk represents constants associated with the k’th linearization plane thereby transforming
the nonlinear inequality of equation 4.19 into a set of p linear inequalities were p is the number
of linearization planes.

The linearization planes are created by drawing a regular polygon within the circle defined
by equation 4.19 with p vertices. The equation for whether a point (x,y) lies within a line
defined by the two points (x1,y1) and (x2,y2) is:

y− y2 =
y2− y1

x2− x1
· (x− x2) (5.32)

Rearranging the equation by moving quotients of the variables (x,y) and non-variable prod-
ucts on the right side yields:

y · (x2− x1)− x · (y2− y1) = x2 · y1− y2 · x1 (5.33)

The set coordinates of the two points defining a yield polygon line (x1,y1), (x2,y2) are
equal to:

x1 = R · cos(αk−µ), y1 = R · sin(αk−µ) x2 = R · cos(αk +µ), y2 = R · sin(αk +µ)
(5.34)

Where αk =
2·π·k

p and µ = π

p . This is now inserted in equation 5.33 together with the rela-
tionships from equation 4.20, restated below for clarity:

x = (σx−σy), y = 2 · τxy, R = (2 · c · cos(φ)+
1
2
· (σx +σy) · sin(φ). (5.35)

Inserting above returns:
2 · τxy · (R · cos(αk +µ)−R · cos(αk−µ))− (σx−σy) · (R · sin(αk +µ)−R · sin(αk−µ))

= R · cos(αk +µ) ·R · sin(αk−µ)− (R · sin(αk +µ) ·R · cos(αk−µ)) (5.36)
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Above equation 5.36 expands even further by substituting R for 2 ·c ·cos(φ)+ 1
2 · (σx+σy) ·

sin(φ) as shown possible in section 4 but for the sake of readability, this is not shown. Said
equation now becomes an exercise of trigonometric relations and identities where the equation
collapses nicely into below equation 5.37 as seen in [1].

σx ·(cos(αk)+sin(φ)·cos(µ))+σy ·(sin(φ)·(cos(µ)−cos(αk))+τxy ·2 ·sin(αk)= 2·c·cos(φ)·cos(µ)
(5.37)

Above equation is the foundation for the yield criteria for a node for the linearization plane
k of the yield surface with the stress degrees of freedom: [σx, σy, τxy]. As the stress state for
this node is within the linearized yield polygon and thereby admissible if the left-hand side of
equation 5.37 is equal to or less than the right-hand side. By equation 5.37, the yield inequality
for the node i is defined by:

[Ak Bk Ck] · [σx,i σy,i τxy,i]
T ≤ Dk; k = 1,2, .....p (5.38)

with: Ak = cos(αk)+sin(φ)·cos(µ), Bk = sin(φ)·(cos(µ)−cos(αk), Ck = 2·sin(αk), Dk =
2 · c · cos(φ) · cos(µ) and p denoting the total number of linearization planes.

Above means that for each node p inequality constraints are made where the local inequality
constraint matrix for node i: Ay,i together with the vector containing the inequalities by,i can be
more formally expressed as stated in equation 5.39 and graphically be illustrated by that the
stress state in node i lying within the linearized circle as show in figure 23:

Ayield,i =


A1 B1 C1
A2 B2 C2
. . .

Ak Bk Ck
. . .

Ap Bp Cp

 byield,i =


D1
D2
.

Dk
.

Dp

 (5.39)

Figure 23: Lower bound stress state

Aarhus University 28



5 The lower bound finite element Robusness of masonry structures by limit analysis

This thereby concludes the yielding constraints for the individual nodes related to brick
yielding. By summing over all the nodes with respect to their individual global degrees of free-
dom, the global yielding matrix for the bricks is created.

As masonry also contains joints, a yielding criteria for these also needs to be created. This
is especially important as these joints often are the planes of weakness within the masonry
structure and thereby prone to yielding before the bricks. As stated earlier in section 4 the
yielding criteria for a joint is simpler than the brick as their physical dimensionality make their
stress state describable by a single normal stress and a tangential stress as stated in equation
4.23, restated and slightly rephrased below:

Fj = |τn|− c j +σn · tan(φ j) = 0 (5.40)

The tangential and normal stress in the joint plane can be generalized with respect to the
brick pattern inclination as seen in [16], by the same principle as done just before for the bricks,
but with the difference of applying the stress rotation equations of equation 4.21 and 4.22. Very
similar to the previous stress transformations with respect to the global stress coordinates, the
stress state in joint j with respect to the adjacent node i equals as in below equation 5.41 where
θ j is the inclination angle of the joint:

σn, j = sin2(θ j) ·σx,i + cos2(θ j) ·σy,i− sin(2θ j) · τxy,i (5.41)

τn, j =−
1
2

sin(2θ j) ·σx,i +
1
2

sin(2θ jσy,i + cos(2θ j) · τxy,i (5.42)

Inserting equations 5.41 and 5.42 into equation 5.40, returns the following expression for
the failure of a node in a joint plane:

Fj =−
1
2
|sin(2θ j)·(σy,i−σx,i)+2 ·cos(θ j)·τxy,i|+(sin2(θ j)·σx,i+cos2(θ j)·σy,i−sin(2θ j))·tan(φ j)= 0

(5.43)
The absolute sign can be removed by making two constraints instead of one and having the

first constraint have the coefficients that are within the absolute value sign change sign for the
two respective constraints, e.g for each node placed at a joint, to not violate the yielding criteria
for this joint, two constraints are made by vectorizing equation 5.43 as done in below equations
5.44;

Ay, j ·βi ≤ by, j (5.44)

With βi =
[
σx,i σy,iτxy,i

]
being the i’th nodes stress vector of joint j and:

Ay, j =

[
sin2 · tan(φ)− 1

2 sin(θ j)
1
2 sin(θ j)+ cos2 · tan(φ) cos(2θ j)− sin(2θ j) · tan(φ j)

sin2 · tan(φ)+ 1
2 sin(θ j) −1

2 sin(θ j)+ cos2 · tan(φ) −cos(2θ j)− sin(2θ j) · tan(φ j)

]
(5.45)

by, j = c j (5.46)

The local inequality constraint matrices are assembled to global matrices similar to done
earlier in equation 5.20:

Ay,solids =
N

∑
i=1

Ay,i (5.47)
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Ay, joints =
J

∑
j=1

Ay, j (5.48)

Where N is the number of nodes, J is the number of nodes associated with a joint as well as
a solid object.

All the constraints for the lower bound optimization problem has now been accounted for
and the problem can be assembled globally. Assembling the problem basically means restating
equation 5.1 with the terminology used for the individual global sub matrices, for clarity the
global inequality and equality matrices have not been concatenated:

Max λ subject to:

Ad,global ·βglobal = bd,global

Ai,global ·βglobal = bi,global

Ab,global ·
[
βglobal λ

]T
= bb,global

Ay,solids ·βglobal ≤ by,solids

Ay, joints ·βglobal ≤ by, joints

This thereby concludes the lower bound element, the total collapse load from the lower
bound solution Qlb is obtained by summing the total forces acting on the individual loaded
elements Qi,e found by integrating the loaded boundary stresses σi,e as maximized by above
optimization problem over the loaded areas.

Qi,e =
1
2
(σ1,e +σ2,e) · le · t Qlb =

eload

∑
i=1

Qi,e (5.49)
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6 The upper bound finite element
For the upper bound elements, the requirements for a rigorous upper solution are:

(a) Kinematic conditions, the velocity field must be compatible, that is, there must be con-
sistency in the velocity field of the solution, this is solved by assuming a linear velocity
variation within the elements and constant strain. The velocity field must also be in com-
pliance with the boundary conditions.

(b) Physical conditions, the plastic flow must obey an associative flow rule:

ε̇i j = λ̇ · dF
dσi j

(6.1)

and with F(σi j) = 0 and λ̇ ≥ 0

The upper bound element is based on a kinematically admissible velocity field in compati-
bility with the boundary conditions. A kinematically admissible velocity field must also satisfy
an associated flow rule continuously throughout the body and the objective of the formulation is
therefore to articulate an expression for the flow rule in compatibility with a velocity field, that
is equation 6.1 for plastic flow within the elements under the condition of constant strain and
equations for plastic flow within possible discontinuities - that is separation- of the elements.
Crudely speaking, these conditions together with the boundary conditions act as the constraints
for the problem while an expression for the energy dissipated by the kinematically admissible
mechanism will act as the objective function to be minimized. The optimization problem is in
contrast to the lower bound problem a minimization one, which in canonical form, as formu-
lated by Sloan [2], reads:

min cT · x
subject to Aequality · x = beq, Ainequality · x≤ binequality

Sloan made an upper bound framework in 1989 that allowed discontinuities of the velocity
field, however with the disadvantage that the user had to specify the sign direction a priori for
each discontinuity as the velocity jump normal to the discontinuity is governed by the dilatation
that occurs irrespective of the sign of the tangential velocity jump. As such the dilatational
motion is a function of the absolute value of the difference in tangential velocities between the
two elements, thereby creating a non-linear constraint if the direction of the tangential velocity
jump is not specified a priori. Specifying the direction of a possible velocity jump is however
very impractical except for very simple geometries, why Sloan [3] some years later created an
updated formulation where by basically creating slack variables for the velocity discontinuity
jumps, making it possible to specify as many discontinuities as the user wishes without speci-
fying the sign a priori. This is done by formulating the flow rule non-rigorously locally for the
discontinuities, while retaining the upper bounding properties.

6.1 Upper bound element formulation
To formulate the flow rule in a discretized manner, constant strain rate linear velocity elements
are used. These upper bound elements utilize linear shape functions and nodes unique to every
element akin to the lower bound elements, but whereas the stresses are the degrees of freedom
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for the lower bound elements, the nodal velocities and element plastic multipliers are the de-
grees of freedom for the upper bound elements under the assumption of constant strain rates
throughout each element [2]. Reusing the generic degree of freedom vector β , the degrees
of freedom for element e are, where ui’s are the horizontal velocities and vi’s are the vertical
velocities :

βe =
[
ui,1 vi,1 ui,2 vi,2 ui,3 vi,3 λi,1 λi,2 . . λi,k . . λi,p

]
, k = 1,2, ..p (6.2)

These degrees of freedom for the element are displayed in below figure 24, where each ele-
ment has 6+ p amount of degrees of freedom where p is the polygon order of the linearization.

Figure 24: Upper bound element degrees of freedom

The same linear shape functions as used the lower bound elements are used, here they
dictate the velocity field within the elements instead of the stress field. As the shape func-
tions are linear, the compatibility condition of equation 4.6 are inherently satisfied. The el-
ement velocity field with respect to these shape functions and the discrete nodal velocities[
ui,1 vi,1 ui,2 vi,2 ui,3 vi,3

]
are:

u(x,y) =
3

∑
i=1

N j(x,y) ·u j v(x,y) =
3

∑
i=1

N j(x,y) · v j (6.3)

Where the shape functions N1,N2 and N3 are:

N1(x,y) =
1

2 ·Ae
· ((x2 · y3− x3 · y2)+ y23 · x+ x32 · y) (6.4)

N2(x,y) =
1

2 ·Ae
· ((x3 · y1− x1 · y3)+ y31 · x+ x13 · y) (6.5)

N3(x,y) =
1

2 ·Ae
· ((x1 · y2− x2 · y1)+ y12 · x+ x21 · y) (6.6)

Where Ae is the element area and the xi j’s and yi j’s equal xi− y j and yi− y j:

y12 = y1− y2 y23 = y2− y3 y31 = y3− y1

x21 = y2− y1 x32 = x3− x2 x13 = x1− x3
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To discretize the flow rule with respect to the constant strain rate field the left hand side of the
flow rule equation 6.1 is equated to the change in the velocity field with respect to coordinates
thereby creating the equations below by first specifying the generic strain field as a constant
strain field with equation 6.7 and thereafter substituting equations 6.4 - 6.6 into below equation
6.7 returns:

ε̇i j = ε̇x + ε̇y + ˙εxy (6.7)

with: ε̇x =
du
dx , ε̇y =

dv
dy , ˙εxy = (du

dy +
dv
dx)

ε̇i j =
3

∑
j=1

dN j(x,y) ·u j

dx
+

3

∑
j=1

dN j(x,y) · v j

dy
+

3

∑
i=1

dN j(x,y) ·u j

dy
+

3

∑
j=1

dN j(x,y) · v j

dx
) (6.8)

To accommodate the right hand side of the flow rule equation while maintaining a linear
set of equations leads to yet another linearization of the yield surface. As mentioned in section
4, to retain the upper bounding properties, the linearized surface must always either align or
protrude the convex yield surface and therefore the linearization process is principally the same
as in previous section 5 in equations 5.34 to 5.38 but where the vertex coordinates are slightly
different. The vertex coordinates are:

x1 = R · cos(αk−µ)

cos(µ)
, y1 = R · sin(αk−µ)

cos(µ)
x2 = R · cos(αk +µ)

cos(µ)
, y2 = R · sin(αk +µ)

cos(µ)
(6.9)

With αk =
2·π·k

p and µ = π

p . Analogously to the lower bound solution, the above is inserted into
equation 5.33 and applied to equation 4.20 which returns an expression for a single yield line k
on the form in below equation 6.10 for the yield rule not to be violated:

Fk = [Ak Bk Ck] · [σx,i σy,i τxy,i]
T ≤ Dk; k = 1,2, .....p (6.10)

with: Ak = cos(αk) + sin(φ), Bk = sin(φ)− cos(αk), Ck = 2 · sin(αk), Dk = 2 · c ·
cos(φ). The entire yield surface in a node equals:

F =
p

∑
k=1

(Ak ·σx +Bk ·σy +Ck · τxy−Dk)≤ 0 (6.11)

Applying this to the flow rule equation returns equation 6.12 by differentiating with respect
to the unknown stresses and summing over the order of the yield polygon:

ε̇i j = λ̇ · dF
dσi j

= λ̇ · dF
dσx

+ λ̇ · dF
dσy

+ λ̇ · dF
dτxy

=
p

∑
k=1

(λk · (Ak +Bk +Ck)) (6.12)

By conjoining above equation 6.12 with equation 6.8 and differentiating the shape functions
with respect to the coordinates articulates the flow rule formulation for the plastic flow within
the upper bound element e as seen in below equation 6.13:

Ae,v ·
[
u1 v1 u2 v2 u3 v3

]T −Ae,λ ·
[
λ1 λ2 . . λk . . λp

]T
= 0 (6.13)
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with
[
λ1 λ2 . . λk . . λp

]T ≥ 0

Where Ae,v is a matrix gathering the linear coefficients associated with the linearly inter-
polated velocities and AE,λ is a matrix gathering the linear coefficients associated with the
linearized yielding function. These matrices equal:

Ae,v =
1

2 ·Ae

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 (6.14)

Ae,λ =

A1 A2 . . Ak . . Ap
B1 B2 . . Bk . . Bp
C1 C2 . . Ck . . Cp

 (6.15)

Above equations 6.13, 6.14 and 6.15 constitutes the constraints associated with kinematic ad-
missibility for plastic flow within the local finite elements.

The global constraint matrices are created by summing over all the local ones with respect
to global coordinates. This is shown in below equations 6.16 and 6.17, where D is the total
amount of discontinuities and E is the total amount of elements:

Ae,v,global =
E

∑
e=1

Ae,v (6.16)

Ae,λ ,global =
E

∑
e=1

Ae,λ (6.17)

Above equations 6.16, and 6.17 thereby concludes the constraints that forces inter-element
velocity jumps to be kinematically admissible.

6.2 Upper bound discontinuity formulation
The primary aim of the discontinuity formulation is to allow kinematically admissible jumps
of velocity between the finite elements meaning, differences in velocities between the finite
elements that satisfies the flow rule. A phenomena that occurs when plastic yielding occurs is
plastic volume increase which, in contrary to the elastic Poisson effect, always is a volume in-
crease regardless of the sign of the plastic deformation. The relationship between the tangential
deformation of a discontinuity and the associated dilatational perpendicular deformation is gov-
erned by a material property called the dilatation angle, which for the assumption of associated
flow equals the internal angle of friction. The basic schematic of the behavior is illustrated in
below figure 25.

As the dilation arises from plastic volume increase due to yielding which only expands and
not contracts, the relationship between ∆vi j and ∆ui j can be deducted from the flow rule in
equation 6.1, which for a stress state in a single plane can be written as:

ε̇ = λ̇ · dF
dσ
⇐⇒

[
˙∆ui j = λ̇ · dF

dτn
˙∆vi j = λ̇ · dF

dσn

]
(6.18)

By completing the differentials and using the Mohr-Coulomb equation for a single plane
stress state, that is F(σn,τn) = |τ|+σn · tan(φ)− c = 0, above equation 6.18 becomes:
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Figure 25: Illustration of discontinuity velocity jump

[ ˙∆ui j = λ̇

˙∆vi j = λ̇ · tan(φ)

]
(6.19)

By exchanging λ̇ with ∆ui j the relationship between ∆vi j and ∆ui j becomes as in below equation
where the absolute sign is included as the volume expansions occurs no matter the sign on the
tangential displacement:

∆vi j = |∆ui j| · tan(φ) (6.20)

The absolute sign makes above equation non-linear which is an issue. This issue is in [3]
solved by adding non-negative velocity degrees of freedom for the discontinuities, where two
degrees of freedom are added for each nodal pair. The tangential velocity jump at each pair is
then definable as the difference of the two degrees of freedom defined for that specific nodal
velocity jump, for instance for the velocity for nodal pair 1,2:

∆u12 = u+12−u−12, u+12 ≥ 0, u−12 ≥ 0 (6.21)

The absolute sign in equation 6.20 can now be circumvented by letting the perpendicular
velocity jump be a function of the sum of these two variables instead of the difference, that is
∆v12 = (u+12+u−12) · tan(φ) . This approach is not intuitively sound as for positive values for both
degrees of freedom, the velocity jump will be wrong, however it is argued in [3] that in practical
instances, this is almost never the case and given the case that both velocities are positive, the
material will numerically behave stronger than in reality thereby maintaining a rigorous upper
bound solution.

Continuing with the formulation, the tangential velocity jumps at the nodal pairs 1,2 and 3,4
equals, with respect to the element nodal velocity global degrees of freedom and the inclination
of the discontinuity θd in cartesian coordinates:

u12 = (u2−u1) · cos(θd)+(v2− v1) · sin(θd) u34 = (u4−u3) · cos(θd)+(v4− v3) · sin(θd)
(6.22)
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6 The upper bound finite element Robusness of masonry structures by limit analysis

Similarly, the perpendicular velocity jump is:

v12 = (u1−u2) · sin(θd)+(v1− v2) · cos(θd) v34 = (u1−u2) · sin(θd)+(v3− v4) · cos(θd)
(6.23)

Figure 26: Illustration of discretized discontinuity velocity jump

Equating above equations 6.22 and 6.23 with equations 6.20 and 6.21 returns below equa-
tions 6.24, 6.25, 6.26 and 6.27:

(u2−u1) · cos(θd)+(v2− v1) · sin(θd) = u+12−u−12, u+12 ≥ 0, u−12 ≥ 0 (6.24)

(u4−u3) · cos(θd)+(v4− v3) · sin(θd) = u+34−u−34, u+34 ≥ 0, u−34 ≥ 0 (6.25)

(u1−u2) · sin(θd)+(v1− v2) · cos(θd) = (u+12−u−12) · tan(φ), u+34 ≥ 0, u−34 ≥ 0 (6.26)

(u1−u2) · sin(θd)+(v3− v4) · cos(θd) = (u+34−u−34) · tan(φ), u+34 ≥ 0, u−34 ≥ 0 (6.27)

Vectorizing above equations 6.24, 6.25, 6.26 and 6.27 returns the flow rule formulation for
kinematically admissible velocity jumps between the finite elements. This vectorization is in
shown below equation 6.28 for a discontinuity defined by the nodal pairs 1,2 and 3,4:

Ad,e ·
[
u1 v1 u2 v2 u3 v3 u4 v4

]T −Ad,d ·
[
u+12 u−12 u+34 u−34

]T
= 0 (6.28)

with
[
u+12 u−12 u+34 u−34

]
≥ 0
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Where Ad,e is the constraint coefficient matrix containing all the linear coefficients associ-
ated with the element velocity degrees of freedom and equals:

Ad,e =


−cos(θd) −sin(θd) cos(θd) sin(θd) 0 0 0 0

sin(θd) −cos(θd) −sin(θd) cos(θd) 0 0 0 0
0 0 0 0 −cos(θd) −sin(θd) cos(θd) sin(θd)
0 0 0 0 sin(θd) −cos(θd) −sin(θd) cos(θd)


(6.29)

Similarly, the coefficient matrix containing the linear coefficients associated with the dis-
continuity velocity degrees of freedom equals:

Ad,d =


1 −1 0 0

tan(φ) tan(φ) 0 0
0 0 1 −1
0 0 tan(φ) tan(φ)

 (6.30)

The global constraint matrices are again created by summing over all the local ones with
respect to global coordinates. This is shown in below equation 6.31 and 6.32, where D is the
total amount of discontinuities and E is the total amount of elements:

Ad,e,global =
D

∑
d=1

Ad,e (6.31)

Ad,d,global =
D

∑
d=1

Ad,d (6.32)

Above equations 6.31 and 6.32 thereby concludes the constraints that forces inter-element
velocity jumps to be kinematically admissible.

6.3 Upper bound boundary conditions
The upper bound boundary conditions are somewhat simpler to implement than the lower
bound boundary conditions. The free edge boundaries requires no constraints and the sup-
ported boundaries can be modelled by forcing the velocities at those degrees of freedom to be
zero. The loading is however tricky to implement in the case of more complex loading than a
single point load. There is not as direct a connection between the upper bound boundary condi-
tions and the applied load as in the lower bound, as in the case of the upper bound one models
loading by forcing certain velocity degrees of freedom to be nonzero. This has the fallacy that it
is not guaranteed that these imposed velocities corresponds to the velocities of the mechanism
produced by the loading. In the case of a single point load, the correct velocity field can very
accurately be assumed to be produced by forcing the velocity degree of freedom in the direction
of the load and at the location of the load to be nonzero, however in the case of multiple point
loads and distributed loads, the loading velocity boundary conditions are not obvious. Conclud-
ing this, the constraints coming from the boundaries are concatenated from the supported sides
and the forced movement of the loaded degrees of freedom. The boundary constraint matrix
therefore reads as in below equation 6.33:
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Ab =

[
Asupport

Aload

]
·ue = bb (6.33)

Where fore the case of a single point load, bb =

[
0
1

]
.

6.4 Objective function and energy dissipation
As mentioned previously, the aim of the upper bound formulation is to formulate an expression
for the energy dissipated given a certain velocity field and plastic multiplier rates while being
kinematically admissible. This subsection will describe how this energy dissipation is formu-
lated and subsequently discretized to fit the linear velocity constant strain elements.

Power can be dissipated both by plastic flow in continuum meaning power dissipated by
plastic flow within the elements and by plastic shearing in discontinuities. The power dissipated
by plastic flow in a continua element e is equal to below integral 6.34:

Pe =
∫

A
(σx · ε̇x +σy · ε̇y + τxy · γ̇xy)dA (6.34)

Reformulating above equation with respect to the linearization polygon as defined in equa-
tions 6.11, 6.10 and 6.12 returns:

Pc =
∫

A

p

∑
k=1

λ̇k · (Ak +Bk +Ck)dA (6.35)

If plastic flow occurs then F(σi j) = 0 and thereby: ∑
p
k=1(λ̇k · (Ak +Bk +Ck)) = Dk = 2 · c ·

cos(φ), with c being the material cohesion and φ being the angle of internal friction, allows the
following rewriting of equation 6.35:

Pe =
∫

A

p

∑
k=1

λ̇k ·DkdA (6.36)

Now, applying the assumption of constant strain within the element, the integral is replace-
able by the element area and the power dissipation on the triangle elements is formulated as:

Pc = 2 · c · cos(φ) ·Ae ·
p

∑
k=1

λ̇k (6.37)

The objective function for element e, ce is a vector which multiplied by the design vector
returns some scalar to be minimized. By vectorizing equation 6.37 with respect to the degrees of
freedom of the plastic multiplier rates: Pc,e = cT

e · λ̇e, the contribution to the objective function
from power dissipated by plastic flow within the elements is equal to below equation 6.38:

ce =
[
2 · c · cos(φ) ·Ae 2 · c · cos(φ) ·Ae . . 2 · c · cos(φ) ·Ae

]
(6.38)

,
[
λ̇e,1 λ̇e,2 . . λ̇e,p

]
The power dissipated by plastic flow in discontinuities is equal to the product of the area of

plastic shearing and the shear strength e.g in the discontinuity expressible by below integral:
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Pd =
∫

L
c · |∆u|dL (6.39)

As we previously defined |∆u| = (u++ u−) to eliminate the non-linearity, the integral be-
comes:

Pd = c · (u++u−)dL (6.40)

Now vectorizing with respect to the nodal pairs (1,2), (3,4) defining the discontinuity and eval-
uating the integral with the assumption of linear variation of velocity, above equation 6.40 can
be discretized into:

Pd =
[ c

2
c
2

c
2

c
2

]
·
[
u+12 u−12 u+34 u−34

]T (6.41)

The objective function contribution from power dissipated in discontinuities is thereby equal to:

cd =
[ c

2
c
2

c
2

c
2

]
(6.42)

The global objective function vector for the discontinuities and the continua elements are
made by summing up equations 6.42 and 6.38 with respect to the global degrees of freedom:
λe,global,ud,global where E denotes the amount of elements and D denotes the amount of discon-
tinuities:

ce,global =
E

∑
e=1

ce (6.43)

cd,global =
D

∑
d=1

cd (6.44)

These two contributions thereby conclude the objective function. Formulating it with re-
spect to all the degrees of freedom βglobal =

[
ue,global λ̇e,global ud,global

]
the global objective

function cglobal equals:

cglobal =
[
0 ce,global cd,global

]
(6.45)

And the power dissipated equals:

Pglobal =
[
0 ce,global cd,global

]T · [ue,global λ̇global ud,global
]

(6.46)

6.5 Recasting into a linear fractional program
So far we have limited the derivations to constituent parts of the optimization problem, which
as formulated by Sloan [3] is formulated as:

Minimize cT · x
Subject to:
Aeq · x = beq, [λe,ud]≥ 0
Above can be clarified by inferring the notation used in this section to below equation:

Minimize
[
0 ce,global cd,global

]T · [ue,global λ̇e,global ud,global
]

Subject to:
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Ae,v,global −Ae,λ ,global 0
Ad,e,global 0 −Ad,d,global

Ab 0 0

 ·
ue,global

λ̇e,global
ud,global

=

 0
0
bb


[λe,global,ud,global]≥ 0 (6.47)

The issue here, as stated earlier is that as the problem is phrased now, there is no direct corre-
lation between the loading pattern and the minimized mechanism, meaning that only if the user
is able to accurately predict the proportionality of the velocity field with respect to the loading
pattern will the solution be correct. This is not an issue if for instance, an object is loaded with
a single local load then an obvious velocity boundary condition to impose is that the velocity in
the direction of the load at the point of the load will be non-zero. However given multiple loads
it is not given that the correct mechanism is directly proportional with said pattern.

The issue arises once the internal power dissipated is equated to the external power applied:

Wext =Wint (6.48)

Which expands to:

γ ·pT ·up = cT
global ·

[
ue,global λ̇global ud,global

]
(6.49)

Where p is the vector controlling the proportionality of the applied loads, γ is the load multiplier
and lastly up is the vector of displacements at the load locations. Rearranging the equation and
isolating the load multiplier γ returns:

γ =
cT

global ·
[
ue,global λ̇global ud,global

]
pT ·up

(6.50)

Above equation 6.50 is non-linear as both the denominator and the numerator of the fraction
is dependent of the velocity field. To include this coupling between the loading and the mecha-
nism the program therefore has to be moved outside the bounds of regular linear programming.
There exists however, a technique called linear fractional programming where a programming
problem of a fraction of linearly linear objective functions, thereby being non-linear, is recasted
into a linear programming problem by a Charnes-Cooper transformation where basically, a
transformation of the independent variables is made and the denominator is forced to equal a
scalar, that is the norm of the solution is forced. What is meant here is, that since the pro-
gramming problem contains the velocity field both in the numerator and the denominator, the
problem can be infinitely scaled, so one has to force the problem to have a certain length which
in conjunction with the change of variable allows a solution. Why this transformation is al-
lowable will not be explained here, it is however explained in [20], but it recasts a fractional
problem on the canonical form:

Minimize
cT

global ·x+α

dT ·x+β

Subject to: A ·x≤ b
Where c and d are vectors, and α and β are scalars, and rephrases into a regular linear program-
ming problem on the form:

Minimize cT ·y+α · t
Subject to: A ·y≤ b · t
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dT ·x+β · t = 1
[t]≥ 0

(6.51)

The original design vector x has been transformed into y and an independent variable t has been
added to the original design vector which is restrained to be non-negative. The transformation
equals:

y =
x

dT ·x+β
, t =

1
dT ·x+β

(6.52)

Where it follows that once a solution to the problem in equation 6.5 is found, then the
solution to the original problem is obtained by:

x =
y
t

(6.53)

Adapting the upper bound minimization problem in equation 6.47 with the change of objec-

tive function from cT
global ·x to λ =

cT ·
[
ue,global λ̇global ud,global

]
pT ·up

requires some reformulation
of the problem, as the canonical linear fractional problem is without equality constraints, hold-
ing only the fractional objective function and inequalities. The equality constraints Aeq ·x = beq
are recast into inequalities by:

Aeq ·x≥ beq, Aeq ·x≤ beq (6.54)

Which is further made into a constraint on the form A ·x≤ b by:[
Aeq
−Aeq

]
·x≤

[
beq
−beq

]
(6.55)

The scalars α and β in the canonical linear fractional problem are zero, and the vector c
is the power dissipation coefficients

[
0 celements,global cdiscontinuities,global

]T and the vector dT

is the vector p controlling load proportionality e.g for equal loading, it will be a unity vector
for the loaded degrees of freedom. The upper bound linear fractional programming problem is
thereby equal to:

Minimize λ = cglobalT ·
[
ue,global λ̇e,global ud,global

]
Subject to:

Ae,v,global −Ae,λ ,global 0
Ad,v,global 0 −Ad,d,global 0
Aboundary 0 0
−Ae,v,global Ae,λ ,global 0
−Ad,v,global 0 Ad,d,global 0
−Ab,global 0 0

 ·
ue,global

λ̇e,global
ud,global

≤
0

0
0


pT ·

[
ue,global λ̇e,global ud,global

]
= 1

[λe,global,ud,global]≥ 0 (6.56)

What is noticeable in above expression, is that the equality of pT ·
[
ue,global λ̇e,global ud,global

]
=

1 forces movement in the system and therefore one can omit to force movement in the boundary
condition constraints, where the only boundary constraints left are supports where movement is
forced to be zero which makes the entire constraint matrix homogeneous resulting in the model
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very being cheap to evaluate in the Matlab linear programming solver. This homogeneity of
the constraint matrix also means that the added variable t in the transformation can be omitted
as there are no constraints controlling it and it can therefore assume any positive value without
influencing the final result. This thereby concludes the upper bound formulation and given the
equality pT ·

[
ue,global λ̇e,global ud,global

]
= 1 which forces the denominator in equation 6.50

to 1, then the applied load multiplier and exterior work done is obtained by:

γ = cT
global ·

[
ue,global λ̇e,global ud,global

]
(6.57)

The total upper bound collapse load Qub is then determined by summing the forces Qe,i
acting on each element:

Qe,i =
1
2
· γ · pi · t · le(u1,e +u2,e) Qub =

eload

∑
i=1

Qi,e (6.58)

Where le is the length of the loaded element side, t the out of plane thickness, pe,i is the relative
load factor for the specific element, u1,e is the velocity of the first loaded degree of freedom of
the loaded side in the direction of the load and u2,e is the second.

Aarhus University 42



7 Experimental program Robusness of masonry structures by limit analysis

7 Experimental program
The experimental program tests a progressive collapse scenario of calcium silicate masonry
wall with cement based thin layer masonry mortar. The collapse scenario was simulated by an
instant removal of a center column in a two-span unreinforced masonry frame leaving the beam
element to act as a deep beam. The sudden column loss was made by pulling a build-in T-
profile simulating instant removal. Preparatory to the column removal the wall was loaded with
a hydraulic jack as previously shown in figure 11 simulating the effects of an evenly distributed
gravity load from hypothetical above storeys and floors schematised in below figure 27.

Figure 27: Isometric of simulated collapse scenario

7.1 Purpose of experimental program
The experimental program was intended to either verify or deny compressive arch action as load
bearing mechanism within unreinforced masonry structures experiencing local failure, where
the presence of this assumed load bearing mechanism is argued for in Appendix E section E.3.1
and was summarized in section 2.
Referring to the classification method in Adam et al. [4] the experimental setup was a mix
between a sub-assemblage and a specimen of a masonry structure. The specimen was made as
accurately to new-build calcium silicate masonry structures as the lab facilities allowed, hereby
making the test of mechanisms resisting progressive collapse tested within a realistic environ-
ment of modern masonry construction allowing for reliable results. The justification of the
experimental investigations is argued for in Appendix E in section E.3.2 and summarized in
section 3, but a brief summary is that similar experimental test in masonry is unseen and that it
is a necessity to learn of the mechanics of masonry structures experiencing local failure to be
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Figure 28: Picture of the experimental specimen

able to improve the knowledge of robustness related issues of masonry structures.
Compressive arch action in masonry panels and catenary action in concrete slab beams when
a structure undergo large deformations are commonly expected collapse resisting mechanisms
within masonry constructions, but are yet to be shown under conditions of sudden loss of load
bearing structural elements.
Large scale tests of the effects of local failures within masonry structures are concluded in Ap-
pendix E section E.3.2 as objective of future research, but the opportunity of testing a building
condemned to be demolished was not present, why the current priority was given to the investi-
gation of compressive arch action in a two dimensional purpose build lab size wall piece.
To summarize the main purpose from a numerical point of view as described in section 4.3 the
acquired test results were intended to validate the numerical modelling framework established
in section 5 and 6 as suitable frameworks to perform a deep beam predictions with the inclusion
of sudden deep bending action due to column loss, and hereby solve issues of robustness of
masonry structures by being able to predict alternative load paths.

7.2 Test setup and procedure
The test specimen was designed as a segment of a facade elevation with two window sized open-
ings and was supported out-of-plane with two intersecting pillars. The construction drawings
of the experimental test object in Appendix A shows the intended design and contain details on
specific boundary solutions.

The masonry wall was build on unreinforced concrete foundations mounted with angle
brackets on a plywood plate fastened to strong floor. In this way foundation was restrained
against movement both in and out of plane, hereby simulating the conditions of a continues
foundation beam. Vapour seal was placed between the concrete and the calcium silicate blocks
as in new build masonry structures to replicate the friction properties of the interface. Figure 29
shows pictures of foundation doing the construction process. In sub-figure 29a it can be seen
that the concrete blocks where placed against the steel frame preventing movement in this di-
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(a) In-plane movement restraining (b) Casting of concrete foundation

(c) Out-of-plane movement restraining

Figure 29: Foundation of masonry wall specimen

rection, where the angle brackets shown in sub-figure 29c prevent movement in the orthogonal
direction. In sub-figure 29c the vapour seal in the interface between the masonry blocks and
concrete foundation is also visible and sub-figure 29b pictures the casting process.
The masonry part of the wall specimen as made with H+H calcium silicate 1900 K10 adaptation
bricks as calcium silicate units are frequently used as load bearing elements in modern masonry
construction. Though the elements normally used have larger dimensions than what was used
to construct the test specimen, the smaller K10 adaptation bricks was chosen so that the test ob-
ject would have additional bed joints. The bed joints were assumed as the planes of weakness
of the masonry and with additional bed joints the compressive force in the arch action would
have to pass more interfaces and with different angles. This allows the test results to be more
generalizable and to be less dependent of the individual brick strengths. Figure 30 sketches the
differing angles between the compressive arch force and the bed joints.
Above the openings were placed autoclaved aerated concrete beams as in typical masonry con-
struction both with minimum 100mm bearings on the pillars as recommended by the manufac-
turer H+H, who supplied the 15M26-141 beams. The height of the remainder of wall segment,
and so the height of the masonry deep beam, was based on a typical story height to be about
700mm equal to 7 courses. The autoclaved aerated concrete beams and the 7 course high deep
beam is depicted in figure 31.
On top of the masonry panel a slab beam was casted to imitate the effects of peripheral rein-
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forcement in concrete slabs. Normally, peripheral ties is placed eccentric to the wall plane, due
to the slab bearings on top of the wall why the slab beam is eccentric to wall plane. To avoid
any out-of-plane moments from loading the test specimen directly on the slab beam the width
was casted the same as the masonry wall and two Y10 reinforcement bars was placed in plane
with the wall. To ensure full anchorage of the reinforcement at the end of the wall and simulate
a continues peripheral stringer 4 rods were casted in and bolted at the end of the intersecting
pillars and tied together with the two Y10 steel bars with L-bars. Figure 32 shows the used
reinforcement before the concrete was casted.
The central column which was to be removed doing the test, was constructed with a steel T-
profile build in between two bricks as shown in figure 33a. The profile acted as pulling device
where a tension cable was fastened and pulled to provide the necessary tension force needed to
remove the column. In the surrounding courses two layers of vapour seal was placed instead of
the thin layer mortar to create two friction-less interfaces easing the collapse.

The test specimen was deigned with two intersecting walls to support the wall segment
against out-of-plane movements, but additional measures was taken to accommodate a possible
scenario where the pulling force from the column removal would introduce out-of-plane rota-
tion, which could provoke another collapse than of a compressive arch passing its limits. Below
figures of wooden elements installed a few millimeters from the wall, such that theirs support

Figure 30: Arch action compressive force
passing interfaces with different angles

Figure 31: Autoclaved aerated concrete
beams and K10 bricks

(a) Peripheral reinforcement (b) Anchorage of reinforcement (c) In-sito rods

Figure 32: Reinforcements of slab beam
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(a) Front of collapse setup (b) Back of collapse setup

(c) Mounted tension cable (d) Manual hand jack

Figure 33: Steel T-profile collapse mechanism

function only were activated if necessary and any vertical effects was avoided.

The experimental test consist of three main procedures as schematized on below figure 35,
firstly, loading of the wall, secondly, removal of the center column, and thirdly, loading until
total collapse.
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(a) Front of collapse setup (b) Back of collapse setup

Figure 34: Additional out-of-plane supports

In the first step the wall is loaded with 50kN, hereby simulating a serviceability stress state
in the wall due to gravity loads from floors supported by the wall and gravity loads from hypo-
thetical storeys above. The supports of the load distributing beam are placed at the central plane
off the aerated concrete beams to simulate a distributed load the best, thereby ensuring the best
conditions for a compressive arch to be developed when the central column is removed.
The second step proceeds from the first step by initiating the column removal and is a very
crucial step, where the preparatory loading forms the basis for testing the masonry walls vulner-
ability to sudden column loss. The removal will show whether the wall instantly will collapse
progressively or have sufficient displacement capacity to redistribute and withstand a sudden
step load and the dynamic effects hereof, which will make the third step possible.
In the third step the wall is brought to total collapse by raising the applied load. If this step is
reached a progressive collapse resisting mechanism has taken action and forcing total collapse
will reveal the type of mechanism and its load capacity.

(a) Loading of the wall (b) Removal of the center column (c) Load until total collapse

Figure 35: Main procedures of experimental test
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7.3 Experimental equipment
The test specimen was loaded with a hydraulic jack that applied load to a load cell mounted on
a HEB200 steel beam distributing the load to two supports free to rotate in the walls direction,
hereby accommodating for large deformations of the specimen. The load sought to imitate
gravity loads from hypothetical storeys and floors above which in reality are constant doing a
collapse, but due to the load being applied with a hydraulic jack, the applied pressure decreased
when the test object deformed, why the pressure was constantly reapplied doing the test. If the
experimental facilities had allowed it, this issue could have been avoided by applying load with a
hydraulic actuator under load-control while it at the same time would supply load-displacement
data.
The pulling force used to remove the central column was provided by a manual hand jack slowly
pulling the T-profile through the column hereby making the collapse more controlled and less
instant.

Figure 36: Setup of DIC system

Digital Image Correlation(DIC) was used to monitor the wall doing the collapse test. DIC
is an optical method which measures deformation on an object’s surface. This is done by com-
paring unique speckles from reference picture before deformation has occurred and a picture
where the object has deformed. VIC-3D systems from Correlated Solutions was utilized to
post-process the pictures taken with two Basler acA1920-155um cameras. As shown in figure
36, the cameras was calibrated at a distance of 5.66m to test specimen and with an internal dis-
tance 3.04m, and lighted up with two 85Watt LED spots lights placed in between the cameras
as close to wall as possible with entering the camera view. The camera view was cropped to a
view showing from the slab beam to middle of the masonry pillars such that the cameras could
capture 200 frames per second.
The wall was carefully painted with a non-reflecting white color in a very thin layer to ensure
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optimal contrast with the black speckles that had a diameter of 8.5mm. Painting the background
color in too thick a layer could have the consequence that the crack pattern visible on the painted
surface is different from the actual crack pattern behind the painted surface, why paint job was
performed with utmost concerns.

(a) Still picture 1

(b) Still picture 2

Figure 37: Speckle noise test

The speckle pattern was generated with Correlated Solutions speckle generator program,
where a pattern with 8.5mm speckles with a density of 75% and a variation 60% has been
tested before hand and was proven a sufficient speckle pattern at the required distance. A noise
test was performed as shown on figure 37, where two still picture of the test object with contour
plots of vertical displacements were investigated. Figure 37a was the picture first taken and the
reference picture, why the displacements plotted are zero and the wall was undeformed. Figure
37b was another picture of the unloaded wall taken a split second later, where the specimen
seemed to have deformed about 0.03mm, though it had not been subjected to any new loads and
should have been zero as well. This noise could be due to speckle pattern errors and poor light
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conditions and could blurry the test results. VIC-3D can perform likewise noise tests on a series
of pictures, finding the the 1-standard deviation confidence in the match in pixels. Comparing
figure 38a showing the speckles and figure 38b showing a contour plot of the standard devia-
tion confidence, it can be interpreted that the noise and uncertainty of the results tend to cluster
and raise where the speckles are more blurred and the contrast between background color and
the speckles was bad. As 0 indicates a perfect match a standard deviation confidence interval
of 0.013 pixels was considered sufficient for this large displacement test, or in other words, a
maximum noise of 0.01mm as depicted on figure 37b, was considered to be enough precision
to describe deformation field of a large displacement test.

(a) Speckles on the specimen

(b) Standard deviation confidence of the test results

Figure 38: Confidence speckle noise test

7.3.1 Material tests

Experimental tests of the concrete compressive strength and cohesion and internal angle of fric-
tion of masonry specimens were performed two days prior to collapse test of masonry wall
performed the 25th of May. The tests were performed as close to the execution date of the
collapse test as possible and were used to calibrate the numerical prediction framework with as
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accurate material parameters as possible. The material tests are reported in Appendix B, but the
essentials of the studies will be outlined below.

Concrete cylinder compressive strength test
Compressive strength tests were performed on three concrete cylinders in accordance with EN
12390-3 Testing hardened concrete - Part 3: Compressive strength of test specimens[21]. The
three cylinders had hardened in 21 days, which is 7 days less than the recognized 28 days of
hardening for concrete to have its full strength. The specimens had a diameter of 100mm and
a height of 200mm, wherefrom two of three cylinders were not compacted probably doing the
casting process, which resulted in a reduced cross section area at the top. The concrete cylin-
ders were tested on at a time in a uni axial test setup with a loading rate of 1.71 kN/s, where
the compressive strengths obtained are tabulated in below table 3 recreated from Appendix B.
Though the number of samples is few, the compressive strength of second concrete cylinder is
seen as an outlier due to its very low compressive strength compared with the other two, why it
is disregarded. The average compressive strength equals 25.04MPa, which in conclusion is the
compressive strength of the concrete used in the top slab beam. The test setup shown on below
figure 39 along with the failure type of cylinder one in figure 40.

Figure 39: Concrete cylinder test setup Figure 40: Failure of cylinder 1

Table 3: Measurements and observation of concrete cylinders

Sample Cross section area
Compressive
strength

Failure type

[-] [mm2] [MPa] [-]
1 7854.0 24.82 Figure 68.4
2 7854.0 18.76 Unsatisfactory
3 7854.0 25.25 Figure 68.4
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Initial shear strength test of calcium silicate masonry
Initial shear strength tests on four calcium silicate masonry samples with KS Blokfix thin layer
masonry mortar were conducted in accordance with EN 1052-3 Methods of test of masonry -
Part 3: Determination of initial shear strength[22]. The masonry samples were made the same
day the masonry wall was build with the same calcium silicate units and mortar batch, allowing
them to have hardened in 24 days when they were tested the 23rd of May.
With a clamp like setup like shown on below figure 41 the samples was precompressed to four
different compressive stress states of 0.2MPa, 0.6MPa, 0.8MPa, and 1.0MPa, before vertical
load was applied to the center brick with an actuator speed of 0.1 mm

min ensuring a slow fracture and
a good depiction of the plastic domain of calcium silicate mortar interfaces. All four samples
failed in the mortar leaving the mortar-brick interface intact as the failure of sample 2 visualize
in figure 42. The similar types of failure is a good indication that the thin layer mortar is the
weak link in calcium silicate masonry, but obviously more tests are needed to conclude this for
sure.

Figure 41: Shear strength test setup Figure 42: Failure in mortar sample 2

Table 4 below is a recreated table reported in Appendix B, which contains sample data
of cross section areas, precompression loads, maximum vertical loads, resulting initial shear
strengths, and failure types. The individual shear strengths are plotted against their individual
normal compressive stresses on subsequent figure 43, where from their relationship is deter-
mined from linear regression as EN 1052-3 prescribes[22]. The internal friction angle was
recorded as the slope of the line and cohesion the intersection of the line with the vertical axis
to be 26.11◦ and 0.25MPa, respectively.

Table 4: Measurements and observation of masonry samples

Sample Cross section area Precompression load Vertical load Initial shear strength Failure type
[-] [mm2] [MPa] [kN] [MPa] [-]
1 22657.8 0.2 16.37 0.36 Figure 73c
2 22454.6 0.6 25.52 0.57 Figure 73c
3 22574.8 0.8 24.32 0.54 Figure 73c
4 22447.5 1.0 36.13 0.8 Figure 73c
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Figure 43: Relationship between shear and normal compressive stresses
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8 Numerical predictions

8.1 Meshing and material parameters
To numerically characterize the experimental setup the meshing of the geometry must accu-
rately allow the the five failure modes described in section 4, figure 12 to be non-restricted by
the specific mesh-configuration. The general meshing layout is therefore done as conceptually
shown in figure 44. The Mohr-Coulomb yielding model is made without a compression cap
and therefore failure in compression is already disallowed from happening. This is justified by
the purpose of the program being to model deep beam behavior and therefore failure in com-
pression is unlikely to occur before a tension or shear failure occurs. Below figure 44 shows
the nodal layout of a full brick-two half brick ensemble. The meshing is shown with blue lines
while the joint layout of the ensemble is sketched with yellow lines. As no joint specific nodes
are created, the local nodes located adjacent to a joint line are created as such to obey the yield-
ing criteria for both the brick/solid material and that of the joint of which it is adjacent to with
respect to the inclination plane of this specific joint.

Figure 44: Micro-scale meshing

Similarly, each individual full-size brick is discretized into at least four quadrants of four
triangles each which allows failure to occur as shown in below figure 45, where the four basic
failure modes of vertical brick joint tensile failure, diagonal shear-compression failure, horizon-
tal joint tensile failure and horizontal joint shear failure is all non-prohibited by the meshing.

Figure 45: Failure types allowable by meshing

The global meshing is done by the principles outlined above. As the areas with concrete and
aerated autoclaved concrete are materially more continuous the meshing can be done a bit more
freely in these areas. Around the corners of the aerated autoclaved concrete beams and in the
area of the applied loading were the stress field is expected to change in the case of the lower
bound, and the velocity field expected to rotate in the case of the upper bound, the meshing
needs to be quite fine in order to let this happen. The meshing layout is done in the open-source
software GMSH and the meshing is shown in below figure 46 with a characteristic element
length of 0.12m .
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Figure 46: Basic meshing of experimental setup

The applied material properties are displayed in below figure 47, where the different solid
materials are displayed with red-brown colour for the CSU-bricks, gray for the concrete, light
blue for the aerated autoclaved concrete and the joints are outlined with yellow lines. The red
lines are loaded vertically, and the green lines are supported vertically and horizontally, where
for the lower bound model the vertical normal stresses and shear stresses are non-restricted with
respect to equilibrium, meaning the vertical normal stress and the shear stress is supported, but
not the horizontal normal stress, as in reality any horizontal forces must be transferred at the
bottom in shear.

Figure 47: Meshed setup with applied properties

Above figures show the meshing with a characteristic length of 0.12m. Calculations has
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been run with other mesh sizes as shown in tables 6, 8, 7 and 9, illustrations of these meshes
are shown in Appendix D.

The applied material parameters are as follows in table 5 table, the reasoning behind the
parameters are explained afterwards:

Table 5: Applied material property table

Parameter Denotation Value
CSU-brick cohesion cbrick 2.127 MPa
CSU-brick angle of internal friction φbrick 45◦

Unreinforced concrete cohesion cURC 4.085 MPa
Unreinforced concrete angle of internal friction φURC 51.8◦

AAR concrete cohesion cAAR 0.13 MPa
AAR concrete angle of internal friction φAAR 25.6◦

Joint cohesion c joint 0.25[MPa]
Joint angle of internal friction φ joint 26.1◦

The only material parameters known with good accuracy are the ones for the joints as they
have been tested. The other material parameters are based on experiments conducted by others,
that fits the materials in the experiment conducted the best.

The first parameters are that of the calcium silicate bricks. Finding experiments done on
cohesive strength and internal angle of friction for these as a stand-alone material has been
tricky, as shear tests on masonry usually is done as an assemblage of bricks and joints. However,
Hulse and Ambrose [23] has conducted a series of tests on regular clay bricks where they test
the initial shear strength, fv,0, which practically equals the cohesion, in relation to the bricks
compressive strength fc. They infer the relationship as in equation 8.1, with all units in MPa:

fv,0 =
fc

31
+1.45 (8.1)

Applying this to the H+H calcium silicate bricks with a declared mean compressive strength
of 24.4 MPa returns:

cbrick =
24.4MPa

31
+1.45MPa = 2.127MPa (8.2)

The internal angle of friction has not been tested for the single brick case however, Sutcliffe
[16] applies an angle of 45 degrees for regular clay bricks and the same is adopted here.

The parameters of concrete is a bit trickier as the top beam is reinforced with longitudinal
rebars however, whether these will yield before total collapse of the wall assemblage is unclear
and it is therefore difficult to characterize the specific contribution of these in the collapse sce-
nario. As the reinforcement is only expected to work by catenary action at extreme deformation
levels and due to the expected global deep beam behavior where the concrete is expected to
be in compression, the defacto strength gain from the reinforcement is deemed negligible and
is therefore omitted. The initial strength e.g the cohesion will therefore be calculated as for
unreinforced concrete as done in [24] by the following equations 8.3 and 8.4:

c =
fc · ft

2
√

ft · ( fc−2 · ft
(8.3)

φ = sin− 1(
fc−4 · ft
fc−2 · ft

) (8.4)
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The cylinder tests shows a compressive strength of fc = 25 MPa which by applying the
Eurocode formula ftm evaluates to:

c =
fc · ft

2
√

ft · ( fc−2 · ft
= 4.085MPa (8.5)

φ = sin− 1(
fc−4 · ft
fc−2 · ft

) = 51.8◦ (8.6)

This now leaves the aereated autoclaved concrete. For this, applicable shear tests are sparse
as well. This report will for the cohesion be based on a series of tests done on longitudinally
reinforced AAC single-spanning slabs in [25] where the shear tests for similarly reinforced slabs
with similar densities show a shear strength of approximately 0.13 MPa, which corresponds
with the Portland Cement Association estimations with ranges the shear strength of AAC in
the range of 0.05-0.14 MPa. The internal angle of friction was not tested, here the numerical
simulation will be based on tests done on lightweight cellular concrete in [26] which estimates
the internal angle of friction of lightweight concrete with the same density as the AAC-beams
to be 25.6 degrees.

8.2 Lower bound results
Running the lower bound program returns a statically admissible internal stress field and thereby
a collapse load. Graphically, this is expressed by the following figures, figure 48 shows the σx
stress field, figure 49 shows the σy stress field, figure 50 shows the shear stress field τxy and
lastly figure 51 shows a plot of which nodes are have an inequality constraint active, that is
a point where yielding occurs. The stress plots have a contour bar for reference with units in
Pascal and the yielding plot shows which type of yielding occurs, that is whether a solid yield
inequality is active or either a head- or bedjoint inequality is active. The lower bound result
is a collapse load of: Qlb = 190.1kN. A discussion of the chosen calculated collapse load of
the system with respect to different mesh configurations and number of linearization planes is
shown in section 8.4.

Below figure 48 shows the x-directional stress distribution, with x being the horizontal axis.
The illustration shows a clear compression strut in the concrete beam between the two applied
loads. As the strength field of the wall is highly anisotropic, and the concrete is significantly
stronger than especially the joints but also the bricks, the subsequent stress field is a bit unclear
however, stress concentrations around the upper corners of the aereated autoclaved concrete
beams is present and slight concentrations at the pillar bottoms as well at the supported bound-
aries. What can be interpreted from the above is that given the concretes high strength, stresses
can be pushed quite wide horizontally within the concrete beam allowing for less horizontal
distance the vertical load has to travel within the brick wall, thereby causing much less of a
tilt of the general compressive struts angle of attack on the joints which activates much more
frictional strength with respect to the low cohesive strength.
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Figure 48: X-directional normal stress

Below figure 49 shows the y-directional stress distribution, with y being the vertical axis.
The plot shows a field of compression from the load areas to the supported areas resembling an
inclined compressive strut from the load areas to the supported areas with the stresses concen-
trated at the aereated autoclaved concrete beam corners where the angle of attack of the strut
changes. The inclination changes at the areas around the aereated autoclaved concrete beams
where due to their weakness, the stresses in ultimate collapse state has to curl around these
corners and then move to the supported edges. A note here is that the program has no compres-
sive cap, and therefore one should be attentive to that the compressive stresses do not reach the
compressive strength of the bricks and mortar assemblages. As the compressive strength caps
out at around ≈ 11 MPa this is considerably less than the compressive strength of the bricks at
24.4 MPa.
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Figure 49: Y-directional normal stress

Figure 50: Shear stress

Above figure 50 shows the shear stress distribution at the lower bound collapse stress state.
The plot shows that the stress field follows the vertical normal stress field in the sense that forces
are transferred in vertical stress and shear to move the forces from the load points to above the
pillars and subsequently to the supports.
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Figure 51: Yield plot

8.3 Upper bound results
Running the upper bound program returns a kinematically admissible velocity field and a col-
lapse load by equating internal power dissipated as evaluated by the objective function design
vector product with external power applied. The graphical illustration of this is a plot of nodal
velocities with direction and size as shown in figure 52.

Figure 52: Velocity plot

The velocity plot crudely translates to rigid body movements as illustrated in below figure
53, where there is separation above the pillars with rotation of the left pillar bot not the right
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one, and a diagonal separation on the deep beam part where the left side rotates clockwise and
the right side counter-clockwise.

Figure 53: Mechanism illustration

8.4 Discussion of numerical predictions
Below tables 6 to 9 shows some comparisons of the two models at different mesh sizes, two
different yield function linearization polygon orders and the associated number of degrees of
freedom and constraint equations:

Table 6: Lower bound, p = 16

Characteristic Number of Number of Number of Number of Computational Total load
length elements DoFs equalities inequalities time [s] [kN]
0.20 1506 13555 12260 78520 230 143
0.15 1596 14365 13012 83036 287 144
0.1350 1889 17002 15378 97908 378 180
0.12 2477 22294 20094 128128 781 185
0.10 3040 27217 24600 156100 1242 189
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Table 7: Upper bound, p = 16

Characteristic Number of Number of Number of Number of Computational Total load
length elements DoFs equalities inequalities time [s] [kN]
0.20 1506 41956 20978 32390 9.55 217
0.15 1596 44444 22222 34868 11.0 201
0.1350 1889 52626 26313 41292 11.4 191
0.12 2477 69078 34539 54216 28.7 193
0.10 3040 84264 42312 66120 47.6 197

Table 8: Lower bound, p = 30

Characteristic Number of Number of Number of Number of Computational Total load
length elements DoFs equalities inequalities time [s] [kN]
0.20 1506 13555 12260 141772 411 145
0.15 1596 14365 13012 150068 491 145,00
0.1350 1889 17002 15378 177246 664 181
0.12 2477 22294 20094 232252 1780 186
0.10 3040 27361 24728 284480 2850 190

Table 9: Upper bound, p = 30

Characteristic Number of Number of Number of Number of Computational Total load
length elements DoFs equalities inequalities time [s] [kN]
0.20 1506 63040 31520 54004 9.10 216
0.15 1596 66788 33394 57212 9.60 199
0.1350 1889 79072 39536 67738 15.9 190
0.12 2477 103756 51878 88894 42.0 192
0.10 3040 127272 63636 109032 85.0 191

Below figures 54a and 54b show computational time for the upper and lower bound so-
lutions with respect to the mesh characteristic length at yield linearization polygon orders 16
and 30. First of all, the lower bound models are a lot more expensive to evaluate and this in-
creases quite rapidly with respect to mesh characteristic length with run times ranging from
230 - 1242 seconds for p = 16 and 411 - 2850 seconds for p = 30. It is interesting to note that
even though the amount of constraints scale linearly with the number of elements and polygon
order and thereby the characteristic mesh length, the computational effort required most cer-
tainly do not. The upper bound solutions are quite a lot faster to run even though the amount of
equalities, inequalities and degrees of freedom are quite larger. This comes down to two things
as mentioned previously, the homogeneity of the equality constraints, and then the diagonality
of the inequality matrix. As the inequalities basically state that the plastic multipliers and dis-
continuity velocities must be larger or equal zero, the inequality matrix is basically one large
homogeneous diagonal matrix of ones.

Below figure 55 shows total collapse for the upper and lower bound solutions with respect
to the mesh characteristic length at yield linearization polygon orders 16 and 30. One would
expect the solutions to asymptotically approach an exact solution as the mesh refines where the
lower bound solutions will reach this asymptote from below and the upper bound from above.
The solutions appear to converge to a collapse load around 190kN, making this the principally
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(a) Lower bound run times for different mesh sizes(b) Upper bound run times for different mesh sizes

predicted collapse load. However, as stated earlier masonry does not obey every assumption
required for applying the extremum principles of limit analysis and this prediction is therefore
very likely to overestimate the capacity of the test specimen.

Figure 55: Collapse loads for different mesh sizes

How ductile the collapse will be is the primary unknown and is in essence the purpose of
the experimental test. If the collapse shows good ductility, the collapse load should be able
to reach around 80-90% of the predicted perfectly plastic load multiplier. The reasoning for
this prediction not being 100 % is that the numerical tool still takes strength contributions from
all joints yielding in tension, whereas in reality at collapse point they will be separated and the
strength comes from purely the compressive strut action within the wall. This issue is illustrated
on the yielding plot in figure 51, where it can be seen that almost all nodes in the active areas are
yielding and contributing strength where the nodes that are yielding in tension should provide
zero tensile strength.
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What figure 55 also shows is that unexpectedly, the upper bound solutions diverges off the
predicted collapse load asymptote as the mesh refines. This is unfortunate and can be due to
a few reasons. First, some mesh configurations appear to allow the model to find a non-global
mechanism which ruins the results when set in comparison with the lower bound results as these
are always global failure modes. Therefore, a few additional constraints for the velocity field of
the loaded elements has been implemented to help facilitate activation of more triangles how-
ever, these additional constraints might skew the individual mesh configurations results slightly
differently. Secondly, the upper bound model is quite prone to differing the failure mechanism
around the pillars. The finest mesh k = 0.1 translates at the left pillar bottom, where k = 0.12
and k = 0.135 rotates at the left pillar, and k = 0.15 and k = 0.20 does not activate movement
in the pillars but rotates the beam part above the right pillar and translates above the left. This
is all shown in Appendix D, where the illustrations from running different meshing configura-
tions are shown. Similarly to the upper bound, the lower bound is also prone to differing the
final failure yield layout of the structure which is shown by the yielding plots for different mesh
configurations in Appendix D, as meshes k = 0.2 and k = 0.15 yield in the left pillar, k = 0.135
yield in both pillars and k = 0.12 and k = 0.1 yield in the right pillar. A take-away from this
inconsistency of failure modes for both upper- and lower bound models is that due to the near
symmetrical geometrical configuration, whether the left or right pillar will fail is very close and
small changes in the equations such as different meshing can change the calculated failure mode.

Summarizing above points regarding the upper bound solution, then it evaluates very fast
however, it is slightly unstable with respect to the collapse load and for practical use, one should
try different mesh configurations and verify by running the lower bound as well. The lower
bound solution is more intuitive to interpret as the link between stress distribution and collapse
load is clear and it is easier to intuitively verify the veracity of the solution, in contrary to the
upper bound where the link between kinematics and loading is more complicated especially for
complicated geometries and material anisotropies as is the case of masonry. The intuitive failure
mechanisms are also somewhat unclear due to the large inherent multi-scale anisotropies. In the
case of the experimental specimen these failure mechanisms can differ dramatically with even
small meshing changes. These points all argue the lower bound model superior to the upper
bound one however, it runs very slowly in relation to the upper bound. Finally, the collapse load
predicted from an assessment of the different meshing configurations for both upper and lower
bound solutions is approximately 190 kN.

8.5 Verification
A hand calculation is made to verify and provide context to the numerical predictions. Two cal-
culations are made concurrently of two similar collapse scenarios, where load barring capacity
of the compressive struts are limited of the shear strength in the bed joints at the supporting
pillars. The scenarios and their specific geometrical conditions are visualized in figure 56 that
shows two compressive struts having different heights of the deep beam and different support
lengths, which results in different angles with the vertical axis. In the first collapse scenario the
autoclaved aerated concrete beams are imagined to fall down doing the collapse and leave the
length bed joint without the support length of the beams, where in the second collapse scenario
the compressive struts are able to press through the aerated concrete beams, leaving the length
bed joint the same as the width of the supporting pillars.

Figure 57 zooms in on the area just above the pillars. As it can be seen, there is no additional
lateral restraints leaving the shear strength of the bed joint just above the pillar as the only lateral
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Figure 56: Expected collapse scenarios Figure 57: Bed joint stresses

support, why the length of this sets the boundaries of the width of the compressive strut σ1. The
shear strength is given by the initial shear strength and the contribution from friction as is written
in below equation.

τ = µ ·σn + fv0 (8.7)

with simple trigonometry τ and σn can be described by σ1:

lsup ·σn = cos(θ) · lsup · cos(θ) ·σ1 ⇒ σn = σ1 · cos2(θ)

lsup · τ = cos(θ) · lsup · sin(θ) ·σ1 ⇒ τ = σ1 · cos(θ) · sin(θ)

Replacing τ and σn in bed joint failure criteria in equation 8.7 and isolating σ1 returns:

σ1 · cos(θ) · sin(θ) = µ ·σ1 · cos2(θ)+ fv0 ⇒ σ1 =
fv0

sin(θ)·cos(θ)−µ·cos2(θ)

With σ1 determined σn can be described and hence the applied load as the double of σn
multiplied with the length of the support and thickness of the wall.
The calculations is made in below table 10 for both collapse scenario 1 and 2, which results in
load capacities of 63.3kN and 134.1kN.
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Table 10: Calculation inputs and result

Input Scenario 1 Scenario 2
Wall thickness [t] 150mm 150mm
Wall length [l] 3900mm 3900mm
Support length [lsup] 540mm 650mm
Deep beam height [d] 864mm 1124mm
Point load placings from center [lload] 705mm 705mm
Angle of compression strut w. vertical axis [θ ]
θ = atan(0.5(l−lsup)−lload

d )
48.5◦ 39.3◦

Material properties
Initial shear strength [ fvk0] 0.28MPa 0.28MPa
Internal angle of friction [θ f ric] 25.0◦ 25.0◦

Friction coefficient [µ]
µ = atan(θ f ric)

0.411 0.411

Load capacity
Compressive strut stress [σ1]
σ1 =

fvk0
sin(θ)·cos(θ)−µ·cos2(θ)

0.888MPa 1.149MPa

Support normal stress [σn]
σn = σ1 · cos2(θ)

0.390MPa 0.688MPa

Applied load
Load [P]
P = 2 ·σn · lsup · t

63.3kN 134.1kN

The 134.1kN is 70.5% of the collapse load predicted by the computational approach which is
assessed as a very reasonable relation as the anisotropy and material complexity of the structure
only allows very crude hand calculations as the one above whereas the numerical programs
should be able to calculate considerably higher collapse loads however, still within the same
order of magnitude of a hand calculation, which conveniently it is.
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9 Experimental results

9.1 Test observations
The collapse test of the calcium silicate masonry wall was conducted the 25th of May and went
according to plan as described in section 7.2. The wall was loaded with 50kN whereafter the
central column was removed with out collapsing such that the load bearing mechanism could be
revealed by increasing the load until total collapse, which is was. The collapsed test specimen
is shown on below figure 58.

Figure 58: Collapsed test object

The wall was loaded to 50kN without developing any visible cracks. When the column
removal was initiated the out-of-plane force was observed to drag the wall out of plane until the
horizontal support was activated, which especially effected the left pillar here introducing some
sliding in the bed joint in the level where the aerated concrete beam was supported. Doing the
removal the masonry deep beam was lifted due to tilting of the masonry bricks in center column,
before the intended sliding mechanism with the 4 vapours seal layers was initiated. As the
central column collapsed the remainder of the test object did only undergo minor displacements
with a small crack between the two aerated concrete beams, and so progressive collapse did not
initiate. Seemingly, the wall immediately redistributed the applied load to the outer pillars. The
specimen was then loaded until collapse, which happened at a load level of 156.2kN, where the
concrete slab beam failed. Up until this point, individual bricks slid and cracks developed in
the middle of the masonry deep beam and the areas above the supports lifted, as a compressive
arch is expected to collapse fracturing into in four rigid parts. Figures 59a to 59f shows the
test specimen after collapse, where the large crack in the center of the deep beam on figure 59a
and 59b splits the beam in two elements rotating inwards. The rotation leads to the uplift at the
supports depicted on figure 59c and 59d. The two pillars reacted differently with the left pillar
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tilting outwards as shown in figure 59e and the pillar to the right failing sliding in a bed joint
near the foundation as shown in 59f. The difference can be due to poor workmanship of the
bricklayer or the angle brackets mounted on the plywood supplying different levels of vertical
support, though it should not provide any support in this direction.

(a) Central crack from the front (b) Central crack from the back

(c) Uplift left pillar (d) Uplift right pillar
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(e) Foundation failure left pillar (f) Foundation failure right pillar

Figure 59: Failure observations of experimental test

9.2 Test results
The experiment was monitored with DIC-Camera system capturing 34704 pictures of the test,
wherefrom displacements and strains are calculated by the VIC software, while a load cell
provided the load data. Both data sets are aligned according to time in below plot in figure 60
and plotted against each other in a force-displacement plot in subsequent figure 62, with the
displacements at the red point marked in figure 61.

Figure 60: Time- & Force-displacement curve of central point marked in figure 61
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Figure 61: Force-displacement data point

Figure 62: Force-displacement curve of data point

The force-displacements curve displays a maximum uplift of 1.94mm before right before
the removal of the central column, whereafter the force drops after the removal. The peak load
capacity of the test specimen was found to be 156.2kN at a deflection of about 16mm. Between
10mm and 30mm the curve shows a plateau like area insinuating that the global failure is some-
what quasi-ductile.
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At every 10kN of the loading, a point is plotted referring to below subfigures in figure 63 show-
ing the specimen at the load steps and the developments of the principle strains on a contour
plot. The contour plots are a bit skewed in the area by the left pillar due to spalling of the beam
early doing the test, why the values in this area are wrong. The principle strains reveals the de-
velopments of the center crack and the uplift at the support and compressive struts. The cracks
and uplift happens quite early in the loading process, where figure 63c at 70kN detects the ear-
liest uplift at the pillar to the right. Figure 63f at 100kN depicts the presence of a compressive
strut going from where the load is applied til the left part of the pillar to the right. Subsequently
to the strain figures the vertical displacements at maximum load capacity is shown in figure 64
depicting a fairly symmetrical displacement, though the center crack develops towards the right
load point a split second later.

(a) Test object and principle strains at 50kN load level

(b) Test object and principle strains at 60kN load level

(c) Test object and principle strains at load level
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(d) Test object and principle strains at load level

(e) Test object and principle strains at 90kN load level

(f) Test object and principle strains at 100kN load level

(g) Test object and principle strains at 110kN load level
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(h) Test object and principle strains at 120kN load level

(i) Test object and principle strains at 130kN load level

(j) Test object and principle strains at 140kN load level

(k) Test object and principle strains at 150kN load level
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(l) Test object and principle strains at 156.2kN load level

(m) Test object and principle strains at at 58.2kN load level post-peak

Figure 63: Progression of principle strain doing the test.

Figure 64: Vertical displacements at maximum load capacity
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Figure 65: Time-displacement of the top left pillar

The effects of the column removal on the left pillar is shown in figure 65, where the out-
of-plane displacements in the orange point on figure 61 is displayed doing the removal. The
plot shows that the pillar has moved 14mm before the sliding mechanism in the central column
is taken action and the wall almost falls back into its original position ending with permanent
displacement in the bed joint of 1mm. Up until 150kN it was in this weakened bed joint the
uplift was observed, but at maximum load capacity the uplift was observed in the bed joint in
above course as can be seen in figure 63l. The behavior is difficult to explain, but is most likely
due to the connectivity with the intersecting wall.

9.3 Experimental collapse load in relation to limit analysis collapse load
The experimental collapse load was: Pexperimental = 156.2 kN while the numerical limit analysis
collapse load is: Pnumerical = 190kN. This amounts to the experimental collapse being 82.2% of
the numerical one. As stated earlier, the experimental collapse load was expected to be in the
80% - 90% range of the numerical one given a somewhat ductile failure. The failure was quasi-
ductile as evidenced by the force displacement curve on figure 62, and the assessed collapse
load of 80%-90% of the numerical one is therefore in decent accordance with the experimental
one. Another element of inherent uncertainty is that of the material properties which for ma-
sonry is an inherent major issue when it comes to predicting collapse loads.

The predicted stress distribution from the lower bound corresponds well with the wall strain
field imminently before failure as shown in figure 84w, where there is a clear compressive strut
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from the loaded points to the pillars which quite narrowly pushes through the pillar-beam joint
as the outer beam parts lifts quite massively. The lift is unpredictable by the lower bound but
the same narrow compression strut at this conjunction is evident. In regards to the upper bound,
none of the mesh configurations predicted the experimental failure mechanism, which is quite
unfortunate. A remark here is that as shown on pictures 59e and 59f then the left pillar rotates
in failure while the right one translates alluring to the deduction that the possible failure modes
are very close in comparison to each other making the discrepancies less concerning.

It is however difficult to generalize the veracity of this quasi-ductile failure mode for all ma-
sonry, meaning that it would be untrue to extrapolate that since this specific deep beam frame
test showed quasi-ductile failure that all masonry deep beams will behave similarly. The rein-
forced concrete beam is a major contributor to the global deformation capacity as even though
brittle tensile failure occurs within the masonry as evidenced by figure 63. The stiffness of
the concrete beam allows equilibrium to be maintained even though the masonry starts rotating
somewhat rigidly. As joint tensile failures starts occurring quite early in the collapse phase, if
one was to apply the method to real-life structures, then one should be able to argue the ductility
of the failure mode with good certainty.
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10 Conclusions
Structural robustness of masonry structures has been investigated in the perspective of a specific
example of a central column loss scenario of a 3-point supported CSU-brick wall with a con-
crete beam on top resembling the defacto concrete beam behavior of a reinforced concrete slab
resting upon the wall. The experiment has been done in the spirit of showing the ductility level
of the failure mode of such a structure thereby trying to verify the applicability of limit analysis
to such a structure. Due to the multi-level of anisotropic behavior including the brittleness of
the failure modes, this applicability is not intuitively verifiable without experimental studies.
The experimental study however, showed decent ductility in failure and the numerical results
were in well accordance with the experimental ones as the experimental load was 82.2% of the
numerically predicted collapse load. The column-loss scenario was forced at around a third of
the total collapse load and seemed to not effect the final outcome of the experiment however, it
is hard to generalize this as the wall at the extraction point was restrained laterally therefore not
reproducing out of plane effects of the column loss scenario, but the in-plane acceleration of
the wall from the column sudden loss did not effect the walls in-plane load capacity nor cause
some progressive collapse mechanism.

One of the primary arguments of applying limit analysis in the perspective of structural
robustness is that it requires relatively few mechanical parameters to characterize and is fast
to evaluate. A conventional stiffness based formulation would need a lot more parameters to
characterize the non-linear regime and it would be very computationally expensive to evaluate
however, it would be able to account for the non-linear damage and hardening phenomena. The
limit analysis model however, does run very fast which makes it practical to use and apply to ge-
ometries on a structural scale. Summarizing the points regarding computational limit analysis,
the methodology and the programs are practical and efficient in the sense that they are fast and it
is practical to have two solutions to the same problem that one knows should be in the very same
vicinity of each other for mutual verification, however they build on a set of principles and as-
sumptions which generally must be obeyed as they generally were in the conducted experiment.

It is however difficult to generalize the applicability of the limit analysis method to all ma-
sonry as it is builds on a set of certain assumptions of failure behaviour that if disobeyed will
wildly overestimate the load. Another point in relation to this is that the manual hand calculated
strut-and-tie model predicted quite a lot lower than the numerical one at 70,5% of the load cal-
culated by the numerical programs meaning that the programs can find the very extremum loads
quite precisely as also evidenced by the near equality of the lower and upper bound solutions.
This means that for practical uses, one should use the methodology at extreme care as a non-
ductile failure will render the programs useless and directly dangerous as they will be likely to
overestimate the failure loads quite massively.

Summarizing, it has been shown by the quasi-ductile failure that the alternative load path
method is likely to be an applicable robustness strategy within masonry structures and can be
numerically characterized with limit analysis.
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A Drawings of experimental setup
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B Determination of concrete strength and Mohr-Coulomb pa-
rameters of CSUs

B.1 Scope
Present experimental tests have the purpose of determining the compressive strength of the top
slab beam and the internal friction angle and cohesion of the calcium silicate units forming,
which in combination forms the specimen being tested in the main experimental test of pro-
gressive collapse resisting mechanisms within unreinforced masonry. The material properties
are used in the numerical model described in section 5 and 6 where they form the yield criterions
used as inequality constraints in the optimization formulation.

B.2 Concrete cylinder compressive strength test
The compressive strength of the hardened concrete cylinders are tested in accordance with EN
12390-3 Testing hardened concrete - Part 3: Compressive strength of test specimens[21].

The tested specimens were hardened concrete cylinders made from the same concrete batch
used in the top slab beam of the main experimental test made the 2nd of May, wherefrom 3
cylinders are casted with a diameter of 100mm and a height of 200mm. All cylinders was
carefully vibrated until large air bobbles are not occurring as shown on below figure 66 and
compressed with the mold lit.

Figure 66: Concrete filled cylinder molds Figure 67: Hardened concrete cylinders

The cylinders were placed laterally to ensure that possible air bobbles were formed at the
side of concrete cylinder and not on the top, hereby ensuring the largest possible cross sec-
tion area on the surface and a satisfactory failure of the cylinder specimen. After two days of
hardening the cylinders were removed from the molds and kept in airtight plastic bag until the
23rd of May, where they where tested. As depicted on figure 67 the cross section area of two
cylinders were not intact when they were removed from the molds, which could blurry the test
results of these. It is likely that the mold lits were not fastened probably and air was let in doing
the process.

The conrete cylinders were tested one at a time in a uni axial test setup, where they were
tested with a loading rate of 1.71 kN/s. The peak compressive strength of samples are reported
in below table 11.
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Table 11: Measurements and observation of concrete cylinders

Sample Cross section area
Compressive
strength

Failure type

[-] [mm2] [MPa] [-]
1 7854.0 24.82 Figure 68.4
2 7854.0 18.76 Unsatisfactory
3 7854.0 25.25 Figure 68.4

The failures of the concrete cylinders are compared with the satisfactory failures from
EN12390-3 to verify the validity of the experimental results. Failures of cylinders one and
three shown on figure 69, shows great resemblance with the satisfactory failure farthest to the
right on the figure 68. The failure type of cylinder two did not resemble very well with any
of the satisfactory failures nor the unsatisfactory failures from EN12390-3[21], but the very
low compressive strength does indicate that the cylinder was flawed and unsatisfactory. The
compressive strength of this cylinder is therefore discarded and the compressive strength of the
concrete used is taken as the average of the strength of cylinder one and three, which equals
25.04MPa.

Figure 68: Satisfactory failure of cylinder specimen acc. EN12390-3

(a) Failure of cylinder 1 (b) Failure of cylinder 2 (c) Failure of cylinder 3

Figure 69: Failures of cylinder specimens
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B.3 Initial shear strength of calcium silicate units
Determination of initial shear strength of calcium silicate masonry is tested in accordance with
EN 1052-3 Methods of test of masonry - Part 3: Determination of initial shear strength[22].
The tested calcium silicate masonry samples was made of leftover bricks and KS Blokfix
mortar used when the wall specimen was made the 29th of April. The samples measured
150x150x300mm resulting in an approximate cross-sectional area of the specimens parallel
to the shear force of 2 · (150 · 150)mm2. The dimensions of the test samples are shown below
figure 70.

Figure 70: Dimensions of masonry sample Figure 71: Steel clamp

The shear force was a result of the vertical load only applied to the center brick as near to
the mortar interface as possible, as implied in figure 70. The load was applied with actuator
with a speed of 0.1 mm

min ensuring a slow fracture and a good depiction of the plastic domain of
calcium silicate mortar interfaces. Precompression of the samples were made with the clamp
setup shown in figure 71 with four steel rods, three steel plates and a load cell measuring the
applied force provided by tightening the bolts uniformly, which was ensured by measuring the
distance between the plates surrounding the load cell with a vernier caliper. The cardboard
made sure that the load cell was fixed to center of the steel plates and masonry sample and did
not introduce any additional force to the load cell.
On the 23rd of May the initial shear strength of the four masonry specimens was tested with four
different compressive stress states, 0.2MPa, 0.6MPa, 0.8MPa, and 1.0MPa. Figure 72 below
shows the numbering of the four masonry samples before they were tested and the following
table 12 reports the cross section area, precompression load, maximum vertical load, initial
shear strength, and type of failure according to figure 73. The stress-strain curves of the four
samples are reported in figures 74 - 80.
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Figure 72: Masonry samples

Table 12: Measurements and observation of masonry samples

Sample Cross section area Precompression load Vertical load Initial shear strength Failure type
[-] [mm2] [MPa] [kN] [MPa] [-]
1 22657.8 0.2 16.37 0.36 Figure 73c
2 22454.6 0.6 25.52 0.57 Figure 73c
3 22574.8 0.8 24.32 0.54 Figure 73c
4 22447.5 1.0 36.13 0.8 Figure 73c

(a) Satisfactory failure type 1 (b) Satisfactory failure type 2 (c) Satisfactory failure type 3

Figure 73: Satisfactory failure types of masonry samples acc. EN 1052-3

Figure 74: Stress-strain curve of sample 1

Figure 75: Failure type of sample 1
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Figure 76: Stress-strain curve of sample 2

Figure 77: Failure type of sample 2

Figure 78: Stress-strain curve of sample 3

Figure 79: Failure type of sample 3

Figure 80: Stress-strain curve of sample 4

Figure 81: Failure type of sample 4
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C Progress of experiment in pictures

C.1 Step 1: Loading the wall

(a) Loading of the wall 0kN (b) Loading of the wall 50kN

Figure 82: Loading of the wall

C.2 Step 2: Column removal

(a) Column removal second 10 (b) Column removal second 20

(c) Column removal second 30 (d) Column removal second 35

(e) Column removal second 39 (f) Column removal second 40

Figure 83: Column removal
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C.3 Step 3: Load until total collapse

(a) 50kN Load (b) 55kN Load

(c) 60kN Load (d) 65kN Load

(e) 70kN Load (f) 75kN Load

(g) 80kN Load (h) 85kN Load

(i) 90kN Load (j) 95kN Load
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(k) 100kN Load (l) 105kN Load

(m) 110kN Load (n) 115kN Load

(o) 120kN Load (p) 125kN Load

(q) 130kN Load (r) 135kN Load

(s) 140kN Load (t) 145kN Load
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(u) 150kN Load (v) 155kN Load

(w) 156.2kN Load (x) 58.2kN Load

Figure 84: Progress until collapse
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D Numerical results from different meshing configurations

D.1 Mesh k = 0.1

Figure 85: k01 meshing illustration

Figure 86: k01 material
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Figure 87: k01 sigma x stress field

Figure 88: k01 sigma y stress field

Aarhus University D- 2



D Numerical results from different meshing configurationsRobusness of masonry structures by limit analysis

Figure 89: k01 shear stress field

Figure 90: k01 shear stress field
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Figure 91: k01 nodal yielding plot

Figure 92: k01 velocity plot
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D.2 Mesh k = 0.12

Figure 93: k012 meshing illustration

Figure 94: k012 material
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Figure 95: k012 sigma x stress field

Figure 96: k012 sigma y stress field
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Figure 97: k012 shear stress field

Figure 98: k012 shear stress field
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Figure 99: k012 nodal yielding plot

Figure 100: k012 velocity plot
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D.3 Mesh k = 0.135

Figure 101: k0135 meshing illustration

Figure 102: k0135 material
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Figure 103: k0135 sigma x stress field

Figure 104: k0135sigma y stress field
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Figure 105: k0135 shear stress field

Figure 106: k0135shear stress field
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Figure 107: k0135 nodal yielding plot

Figure 108: k0135 velocity plot
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D.4 Mesh k = 0.15

Figure 109: k015 meshing illustration

Figure 110: k015 material
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Figure 111: k015 sigma x stress field

Figure 112: k015 sigma y stress field
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Figure 113: k015 shear stress field

Figure 114: k015 shear stress field
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Figure 115: k015 nodal yielding plot

Figure 116: k015 velocity plot
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D.5 Mesh k = 0.2

Figure 117: k02 meshing illustration

Figure 118: k02 material
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Figure 119: k02 sigma x stress field

Figure 120: k02 sigma y stress field
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Figure 121: k02 shear stress field

Figure 122: k02 shear stress field
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Figure 123: k02 nodal yielding plot

Figure 124: k02 velocity plot
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E Literature study: Robustness of masonry structures

E.1 Introduction
In the field of structural robustness significantly less information is available on masonry struc-
tures compared to concrete and steel structures. In Europe considerations on structural robust-
ness of masonry structures are mainly covered by EN1991-1-7, whereas for structures of mate-
rials such as reinforced concrete and steel additional information and requirements are stated in
their material specific codes.

Authors Adam et al. and Ellingwood et al. both addresses this knowledge gap in their own
papers on progressive collapse and robustness of structures. They argue that masonry walls
both in situ-build and pre-engineered are inherently more vulnerable than walls of other materi-
als due to of difficulties in providing continuity and ductility, but are fairly redundant by having
a large number of bearing walls and shorter spans, which to some extent compensate for the
reduced ductility. Prolonging the issue the authors comment that pre-engineered buildings are
designed tightly with respect to the design envelope as a result of competition, and are sensitive
to even moderate deviations from the design envelope caused by unforeseen events or change
in live loads, which further confirms that comprehensive studies on masonry buildings need to
be made on how a local failure in any part could propagate elsewhere and how alternative load
paths can be formed to avoid progressive collapse [4, 27].
Forming alternative load paths in masonry is difficult and even harder to prove. Even though the
scientific community have devoted a consistent effort to the computational analysis of masonry
structures in order to develop tools for the prediction of the structural behavior, the computa-
tional analysis of masonry structures is still a challenging task. D’altri et al. highligt in their
literature study on the subject, that the mechanical response of masonry is highly nonlinear and
the geometry of structures often introduce deep complexities and uncertainties, why different
strategies of analysis and different approaches and scales of representation of the mechanical be-
havior of masonry have been proposed. The authors categorize and discuss the different strate-
gies of analysis and approaches and conclude that each computational solution shows peculiar
limitations and a specific area of application, why the choice of the most suitable modeling
strategy is a matter of the task [15].

The aim of this paper is thus to carry out a review of the main guidelines within struc-
tural robustness of masonry and of the main approaches in the field of computational modelling
strategies of masonry. The content and range of the aspects dealt with form a guide for anyone
interested in entering this field of study. Even though other authors previously have provided
excellent reviews of modeling strategies for the computational analysis of masonry structures
and research on progressive collapse and robustness of structures [4, 15], the present review
specifically orient towards structural robustness of masonry structures and suitable computa-
tional modelling strategies in this context. The paper include:

• A description structural robustness (Section E.2) and recommended guidelines within
masonry constructions.

• A description of present computational modelling strategies of masonry (Section E.4)
subdivided into into three main categories of approaches.

• The authors’ reflections on present and future needs in the field of robustness of masonry
structures and suitable computational modelling approaches (Section E.5).
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E.2 Structural robustness
The interest of structural robustness began with the progressive collapse incident of Ronan
Point in London in 1968 after a gas explosion. The attention on the subject of robustness and
safety only became larger with events such as the Murrah building collapse in Oklahoma, 1995,
the collapse of the World Trade Center buildings in New York, 2001, and the collapse of the
Achimota Melcom Shopping Centre in Acra, 2012 [4].

E.3 Robustness as concept
Defining structural robustness
In the decades after Ronan point robustness of structures was codified in various building codes
and researched by various authors, all trying to define robustness in their own way. One common
denominator is that robustness is resistance of disproportionate collapse or progressive collapse,
which definition also is varying from author to author. The literature study of robustness made
by Adam et al. makes an overview of different definitions of progressive and disproportionate
collapse and of structural robustness both providing the reader with common understanding of
the wordings. The findings of Adam et al. are outlined in below recreated tables 13 and 14.

Table 13: Selected definitions of progressive and disproportionate collapse

Source Definition

Allen and Schriever
Progressive collapse [...] can be defined as the phenomenon in which local failure is followed by collapse of adjoining members which in turn is
followed by further collapse and so on, so that widespread collapse occurs as a result of local failure.

Gross and McGuire
A progressive collapse is characterized by the loss of load-carrying capacity of a relatively small portion of a structure due to an abnormal load
which, in turn, triggers a cascade of failure affecting a major portion of the structure.

GSA guidelines
Progressive collapse is a situation where local failure of a primary structural component leads to the collapse of adjoining members which, in
turn, leads to additional collapse. Hence, the total damage is disproportionate to the original cause.

ASCE 7-05
Progressive collapse is defined as the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire
structure or a disproportionately large part of it.

Ellingwood
A progressive collapse initiates as a result of local structural damage and develops, in a chain reaction mechanism, into a failure that is
disproportionate to the initiating local damage.

Canisius et al.
Progressive collapse, where the initial failure of one or more components results in a series of subsequent failures of components not directly
affected by the original action is a mode of failure that can give rise to disproportionate failure.

NISTIR 7396
Progressive collapse—The spread of local damage, from an initiating event, from element to element resulting, eventually, in the collapse of an
entire structure or a disproportionately large part of it; also known as disproportionate collapse.

Agarwal and England
Disproportionate collapse results from small damage or a minor action leading to the collapse of a relatively large part of the structure. [...]
Progressive collapse is the spread of damage through a chain reaction, for example through neighbouring members or storey by storey. [...]
Often progressive collapse is disproportionate but the converse may not be true.

Krauthammer Progressive collapse is a failure sequence that relates local damage to large scale collapse in a structure.

Starossek and Haberland
Disproportionate collapse. A collapse that is characterized by a pronounced disproportion between a relatively minor event and the ensuing
collapse of a major part or the whole of a structure.Progressive collapse. A collapse that commences with the failure of one or a few structural
components and then progresses over successively affected other components.

Kokot and Solomos
Progressive collapse of a building can be regarded as the situation where local failure of a primary structural component leads to the collapse of
adjoining members and to an overall damage which is disproportionate to the initial cause.

Parisi and Augenti
Progressive collapse [...] is a chain reaction mechanism resulting in a pronounced disproportion in size between a relatively minor triggering
event and resulting collapse, that is, between the initial amount of directly damaged elements and the final amount of failed elements.

Table 14: Selected definitions of structural robustness

Source Definition

GSA guidelines
Robustness–Ability of a structure or structural components to resist damage without premature and/or brittle failure due to events like
explosions, impacts,fire or consequences of human error, due to its vigorous strength and toughness.

EC1–Part 1–7
Robustness: The ability of a structure to withstand events like fire, explosions, impact or the consequences of human error, without being
damaged to an extent disproportionate to the original cause.

Bontempi et al.
The robustness of a structure, intended as its ability not to suffer disproportionate damages as a result of limited initial failure, is an intrinsic
requirement, inherent to the structural system organization.

Agarwal and England Robustness is [...] the ability of a structure to avoid disproportionate consequences in relation to the initial damage.

Biondini et al.
Structural robustness can be viewed as the ability of the system to suffer an amount of damage not disproportionate with respect to the causes of
the damage itself.

Vrouwenvelder The notion of robustness is that a structure should not be too sensitive to local damage, whatever the source of damage.

JCSS
The robustness of a system is defined as the ratio between the direct risks and the total risks (total risks is equal to the sum of direct and indirect
risks), for a specified time frame and considering all relevant exposure events and all relevant damage states for the constituents of the system.

Starossek and Haberland Robustness. Insensitivity of a structure to initial damage. A structure is robust if an initial damage does not lead to disproportionate collapse.

Fib Model Code 2010
Robustness is a specific aspect of structural safety that refers to the ability of a system subject to accidental or exceptional loadings (such as fire,
explosions, impact or consequences of human errors) to sustain local damage to some structural components without experiencing a
disproportionate degree of overall distress or collapse.

Brett and Lu
[...] ability of a structure in withstanding an abnormal event involving a localized failure with limited levels of consequences, or simply
structural damages.
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As table 13 indicates progressive collapse and disproportionate collapse is often used inter-
changeably although not being the same thing. A progressive collapse describes the behaviour
of the structural collapse, where as a disproportionate collapse refers to the size of the collapse
in context of the initial cause. Therefore, a collapse can be progressive without being dispro-
portionate and vice versa, but the term does of cause not rule out each other[6].
Likewise, table 14 shows a lack of consensus on the definition of structural robustness. Though,
the wordings differ it is broadly agreed that robustness is the ability of the structure to avoid
consequences disproportionate to the event causing failure. Adam et al. prolong the descrip-
tion by arguing that the actual robustness of a structure is a threat-dependent property of the
entire structural system where it depends on the system’s characteristics, strength, ductility,
redundancy, continuity, and the type of abnormal loading. The authors underline structural ro-
bustness depends mostly on redundancy, which is the structures ability to redistribute loads after
a local failure of one or few elements, hereby developing alternative load paths [4].

Designing structural robustness
Robustness of structures is handled by designing structures with the above mentioned system
characteristics in the scale that it is needed. The design approaches that exists for designing
robust structures differs in codes around the world, but is mostly variations of one or more basis
approaches, where the common approaches is Tie-force based design methods, Alternative load
path methods, Key element design, and Risk-based methods[6].

Tie-force based design methods
The methods are prescriptive rule based approaches, where the structural robustness indirectly
is enhanced by considering the structure to meet robustness requirements through minimum
levels of ductility, continuity and tying. Tie-force based design requires the designer to detail
the structure such that members are mechanically tied together in accordance with specified
requirements. For example in EN 1991 annex A minimum requirements of the capacity of ver-
tical and horizontal ties are stated, to ensure that junctions have the ability to redistribute loads
to some extent. Arup(2011) concludes in their literature study that there is a general consensus
amongst most of the published literature that tie-force methods provide a minimum level of
robustness to structures, but that the level of robustness cannot be quantified. The methods are
found suitable for low-risk structures, but that deterministic methods are necessary as a sup-
plement for buildings which are higher-risk. Arup’s conclusion is based on several researchers
finding tying inadequate in developing sufficient resistance against progressive collapse [6].

Alternative load path methods
The methods are quantitative and direct approaches, where the structure is shown to have ade-
quate resistance against collapse by forming new load transferring mechanisms in the case that
a load bearing member should fail. The capability of a structure to adequately redistribute the
additional loads is achievable through redundant design by continuity of load bearing elements,
ductile junctions, as well as designing statically indeterminant systems. If the residual load car-
rying capacity in these new transferring mechanisms is insufficient to sustain this additional load
those elements will fail and the collapse will propagate [6]. Alternative load path approaches
is widely accepted to be based on notional element removal, where the aim is to demonstrate
robustness explicitly by assessing the ability of the structure to redistribute the additional loads
under codified damage conditions. Adam et al. addresses the concern of some researchers that
the approach in practice requires several assumptions and simplifications resulting into a huge
number of potential assumption combinations, which can lead to design solutions with different
levels of robustness. Within these considerations is among others, whether or not to account for
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the source of the local damage and the dynamic effects of the hazard [4].

Key element design
The method is a direct scenario-specific design method, where structural members which failure
can activate a progressive collapse are identified and designed to resist accidental loads speci-
fied in codes, hereby increasing the likelihood of the structure’s survival in case of an accidental
event. The key element design approach is recommended in many codes and guidelines, but
is in some countries seen a method of last resort when the alternative load path methods are
unable to demonstrate sufficient load redistribution ability of the structure [27].

Risk-based methods
Risk-based method is commonly used where the structural design fall outside normal limits and
the consequences of a collapse will be severe, where such building classes is specified codes
and national building regulations. Systematic risk assessment may draw upon and implement
one or more of the above methods of design, since by implementing them the probability of
either a hazard happening, damage occurring given a hazard, or extensive global damage given
a hazard are reduced [6].

Designing structures to be less vulnerable to progressive collapse requires consideration of
the damaged state as consequence of a hazard and to provide the structure with multiple load
paths. Best practices will start with a selection of a structural system and provide it with ductile
details that are capable of developing large inelastic deformations.
For the vast majority of structures, the design requirements may be prescribed using indirect
methods e.g. prescriptive rule based approaches, resulting in robust structures with great capac-
ity to sustain abnormal loading. For larger structures and when it is shown that the minimum tie
force required by the indirect method can not be developed, direct analytical methods may be
used to determine the design details required through alternative load paths to redistribute load
and key elements to resist a specified threat [27].

E.3.1 Masonry specific robustness

The design approaches mentioned above are applicable to any structure and are considered in
building codes around the world. Codes normally provide additional specific requirements for
different materials and forms of construction in the form of additional detailing rules, as part
of indirect design measures. In the decades after the Ronan Point accident a lot of research
was made whereas both research and experimental tests up til now mainly has been focusing
concrete, steel, and composite structures, practically ignoring masonry structures [4].

The lack of interest of structural robustness of masonry structures up until now combined
with the difficulties to form alternative load paths in masonry have let to rather vague guidelines
in numerous codes. In table 15 guidelines from selected sources are tabulated hereby highlight-
ing the issue. The sources do broadly agree on the three usable methodologies to construct
robust masonry structures, e.g. usage of horizontal, vertical, and peripheral ties, enhancing
element strengths and alternative load paths.

Tie force requirements
All the sources in table 15 but GSA suggest using a tie-ing system only the British Standard
and the UFC4 provide specific requirements to tie-ing force capacities, whereas the British
requirements relies on the building class to be 2A or 2B and the UFC4 requirements relies on the
building to be at least in Risk category 2. The British requirements for horizontal and peripheral
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Table 15: Selected guidelines of structural robustness of masonry structures

Source Guidelines
Specifies
requirements

NISTIR 7396
[27]

In masonry structures, peripheral horizontal ties should be provided
along the whole perimeter within a nominal distance of slab edge, and
anchored at reentrant corners. Interior horizontal ties should be pro-
vided both ways either uniformly or in strips at regular spacing or in
walls in close proximity to the floor or roof. Exterior horizontal ties
should be provided from perimeter columns and walls to floor slabs.

no

EC6–Part 1–1
[28]

(2) The structural behaviour under accidental situations should be con-
sidered using one of the following methods:
- Members designed to resist the effect given in EN 1991-1-7
- The hypothetical removal of essential load bearing members in turn
- Use of a tie-ing system
- Reducing the risk of the accidental actions.

no

UFC4-023-03
[29]

Provide three horizontal ties; longitudinal, transverse, and peripheral.
Vertical ties are required in columns and load-bearing walls.
The Alternate Path method, where applicable, to verify that the struc-
ture can bridge over removed elements.
The Enhanced Local Resistance requirements, where applicable, for
framed and load-bearing wall masonry buildings.
The structure shall be able to bridge over vertical load-bearing ele-
ments that are notionally removed one at a time.

Yes

GSA [30]
Use the Alternate Path method to verify that the structure can meet
defined acceptance criteria.

no

BS5628-1 [5]

Peripheral, internal and column wall ties should be provided at each
floor level and at roof level, but where the roof is of lightweight con-
struction such ties need to be provided at that level.
Vertical ties should extent from roof level to the foundation or to a level
at and below which the relevant members of structure are protected

Yes∗

*Tie-force requirements depends on the building class

tie-ing force capacities evolves around a basic tie force ft = min(60kN;(20+4 ·ns)kN), where
ns is the number of stories. The code differentiate between internal and external walls and
columns by scaling the basic tie force with a constant either fixed or depending on characteristic
dead and live loads, span lengths and story heights. Vertical tie-ing force capacities are stated
as the greater of (34·A

8000 · (
ha
t )

2)N or 100kN
m length of wall or per column, with A, ha, and t being

the cross section area in mm, the clear column or wall height, and the column or wall thickness.
The Department of Defence(UFC4) suggests a general approach named the Load and Resistance
Factor Design approach that distinguish between one-way and two-way load bearing systems.
Generally, the design tie strength must be greater than or equal to the required tie strength;

φ ·Rn ≥ Ru

The design tie strength is the product of a material specific strength reduction factor, φ , and
a nominal tie strength Rn. The required tie strength pr. kN

m in the longitudinal or transverse
direction is 3 ·wF ·L1, where wF is the floor load through combination of dead and live loads
and L1 the span length. In figure 125 from UFC4 the L1, spacing requirements between the ties,
and column-wall-areas are schematized for two-way span load bearing wall constructions. L1 is
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Figure 125: Determination of L1 and column area for Frame and two-way span Load-bearing
wall construction [29]

equal to the one-sided span and the spacing between the ties must not exceed a fifth of the span.
In the column or wall area twice the tie force requirements shall be placed in the direction of the
tie under consideration. Similar approaches is suggested for peripheral tie force requirements.
The vertical tie must have a design strength in tension equal to the largest vertical load received
by a column or wall from any one story, using the tributary area and the floor load wF [5, 29].
The remainder of the sources in table 15 do not mention tie-ing force capacities. The British
Standard supports their requirements with a phrase stating ’provide effective anchoring’, which
Arup(2011) finds very unfortunate. The phrase was reformulated from the 2002 edition where it
stated effective horizontal ties what Arup argues to be indisputably more robust than ’effective
anchoring’, as may be shown from an analysis of the connection details under the horizontal tie
forces given in the codes of practice [6].
Arup(2011) and Morton(BDA1985) continuously raises concerns regarding anchorage in ma-
sonry. It is argued that a hazard could have the effect of dragging out the individual bricks in
which the ties are anchored and refer to a test on a model concrete panel high rise block at the
Building Research Establishment where this behaviour was confirmed [31]. The reason of the
behaviour is that the capacity of most of the details recommended in BS 5628-1 annex D relies
on friction at the block/mortar interface. Two of the recommended details are illustrated in fig-
ure 126 and 127 wherefrom the local anchorage issues and friction reliance can be interpreted.

In many cases with ties fastened to masonry the block/mortar interface is limited to the fric-
tion of the bed joint why the capacity of such joints will depend on friction and vertical load,
and will be heavily influenced by issues such as quality control, workmanship, shrinkage or
reduction in bond between the floor, mortar and the wall [6].

Enhanced local resistance
The second common guideline among the tabulated sources in table 15 is designing the mem-
ber to resist the hazard or enhanced local resistance. Load bearing elements are basically to be
designed to resist any imaginable load scenario which reasonably could happen. Both the Eu-
rocode and Department of Defence support the guideline with hazards, requirements and design
loads, which acts regardless of material type of the structural element. It is worth noting that
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Figure 126: Example of horizontal
ties [5]

Figure 127: Example of vertical ties

local enhancement is a direct design scenario-specific method, why its main focus is to avoid
local failure and not prevent progressive collapse given failure [4].

Alternative load paths
The last common guideline in the quest of designing robust masonry structures is the alterna-
tive load path method. As with the local enhanced resistance guideline, alternative load paths
are not alone a masonry tool. Of the sources in table 15 the Eurocode and and Department of
Defence support support the guideline with requirements of which elements to be notionally
removed. The British Standard and General Services Administration relies on requirements of
the Eurocode and and Department of Defence, respectively. Successful redistribution of load
through alternative load paths within masonry structures relies on mobilisation by compressive
strut action, which can have substantial load bearing capacity. Other authors refer to this be-
haviour as arching action and though figures 128a and 128b schematize the action differently
it is to versions of the same, both preventing localized failure from affecting a larger portion
of the structure. It is important to stress, that for arching action to be effective, adequate abut-
ments capable of providing sufficient resistance against rotation, lateral and axial movements
are necessary [27, 6, 31, 7].

(a) Hidden arch (b) Compressive strut action

Figure 128: Redistribution of load by alternative load paths [6][7]

The mentioned guidelines in table 15 will all provide a structure with some level of robust-
ness. That being said, robustness was in section E.3 defined as the ability of the structure to
avoid consequences disproportionate to the event causing failure, and comparing with the ro-
bustness outcome of enhanced local resistance the guideline does not provide a structure with
such ability. Providing a structure with horizontal and vertical ties will on the other hand give
as structure such abilities if the tie-ing details are thoroughly made such that local failure of
the anchorages are prevented, though being, as mentioned, heavily influenced by issues such as
quality control, workmanship, and shrinkage. Ensuring alternative load paths are arguably the
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guideline who fits the robustness definition the best, but is at the same time the more difficult
guideline to demonstrate. Intuitively, alternative load paths in masonry can be proved through
arching actions, where several authors stress that a great potential of load bearing capacity can
be located.

E.3.2 Testing structural robustness

Experimental setups
Robustness as a structural ability is difficult to measure and to experimentally test, but huge
advances in the field of progressive collapse has made it possible to improve existing codes
and design recommendations and calibrate numerical models. According to Adam et al. most
of the experimental tests made to date have mostly been focusing on concrete and steel struc-
tures, where failure of one or more columns was simulated and considered threat independent
scenarios on four different levels [4]:

a) sub-assemblages usually formed by two beams and one or more columns.

b) frames formed by beams and columns.

c) building structures constructed solely for experimental purposes.

d) actual buildings condemned to demolition.

Common for type a and b is both the prototype size and the types structural elements. The
structural assemblages often consist two span beams and one or three columns, whereas the
tests simulate the removal of a column often simulated with hydraulic actuators. The behaviour
of beams and beam-column joints are studied in order to characterise the resistance mechanisms
that could help to hold up a progressive collapse such as flexural, arch, and catenary action. To
analyse in detail some researchers use digital image correlation (DIC) to analyse the cracks and
strains during different stages of the tests.

Type c experimental test subjects are structures constructed to act as “specimens”, where-
from particularly reliable results can be obtained if care is given to their design, construction,
monitoring, data acquisition and treatment of the results. According to Adam et al. the reliabil-
ity of this method of testing means that the results obtained can be used as a dependable source
for calibrating numerical models and proposed measures for codes and design recommenda-
tions, but is quite expensive and risky why it is rarely used.

Lastly type d, tests on buildings to be demolished. Some authors have taken advantage of
such buildings, in which they have simulated the failure of one or more columns in both steel
and concrete structures. In the full scale experiments commented by Adam et al. damage is
generally simulated by removing up to four columns either internal or on the perimeter. The
structures tend to be sufficiently robust to withstand the simulated damage, where the damage
detected after the failures was insignificant with only quite small vertical displacements thanks
to the appearance of Vierendeel action-based alternative load paths and contribution of infill
wall and external walls. One test showed that the more storeys a building has, the greater its
load redistribution capacity after the failure of a column.

Each experimental setup has its own benefits. Local robustness with specific resistance
mechanisms and capacities of structural details are most likely to be tested in labs with ex-
act equipment and variable control, and if more variables are introduced and the test subjects
are structures constructed to act as “specimens” dependable sources for calibrating numerical
models can be achieved. Full scale testing of actual buildings condemned to be demolished
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comes with a price of many unknowns and different resistance mechanisms against progressive
collapses, but is a great way of testing global robustness of a structure.

Testing masonry structures
Experimental tests of masonry specifically focusing on structural robustness has been a ne-
glected area, but has recently been given attention. In the main part the effect masonry working
as a secondary element such as infill walls in concrete frames or masonry panel subjected to
blast loads. In any case the experiment is setup as a sub-assemblage making it possible to test
in labs and minimize unknown variables.
In progressive collapse analysis if masonry not is primary load bearing element only its weight
is are considered and not its stiffness. Kai Qian and Bing Li test the effect of masonry infilled
walls on the load resisting capacity of reinforced concrete frames to mitigate progressive col-
lapse and find that ignoring the effects of masonry infilled walls in progressive collapse design
may result in substantial inaccuracy in predicting the stiffness, strength, and failure modes to
resist progressive collapse [8].
Only a few studies focusing on robustness have been carried out with masonry as the primary
structural element. Out-off-plane behaviour of masonry walls subject low-velocity impacts and
blast loads is focus of these studies aiming to explore brick masonry’s relatively small resistance
against such loading types. Adam et al. concludes in their literature research that this subject
deserves further investigation to assess and reduce the vulnerability of buildings to catastrophic
explosions that frequently occur as a result of gas leaks from building utility service systems [4].

Rising attention on the subject of structural robustness of masonry structures in the field
of experimental mechanics have led to some test of sub-assemblages mainly focusing on the
structural element subjected to a hazard. This leaves large scale tests on the effects of a hazard
in terms of a progressive collapse of masonry structures still unexplored and earlier mentioned
substantial load bearing capacities([27, 6, 31, 7]) unproven.
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E.4 Computational Modelling Of Masonry
E.4.1 Mechanics Of Masonry

The term unreinforced masonry describes a wide range of material combinations but generally
describes a combination of quasi-brittle rock like blocks as the primary constituents. Masonry
can be made "dry", that is without any binding agent connecting the blocks, however as this is
not used on a significant scale in Denmark, all masonry so forth will be describing a composite
material of quasi brittle blocks connected either with Portland based cement mortar, lime mortar
or adhesive mortars.

The mechanical behaviour of Masonry is therefore defined by the properties of the blocks
and by the mortar as well as the joint interaction of the two. In general, the failure modes
of masonry are describable by five different mechanisms as are listed below, and illustrated in
figure 129, [15].

(a) Block-mortar interface tensile failure

(b) Block-mortar interface shear sliding failure

(c) Diagonal masonry shear-compression failure

(d) Crushing failure of Masonry blocks

(e) Block and mortar tensile cracking normal to head joints

Figure 129: Masonry failure modes [15]

Masonry is, due to the combination of blocks and mortar and the bond pattern of the two
an anisotropic and heterogeneous material. The anisotropic characteristics of masonry exists
elastically in the sense that the stress-strain relationship differs with the respect to orientation
and in regards to strength as the strength properties also differs with respect to orientation. Sim-
ilarly, there is a significant difference between tensile and compression strengths complicating
even further with compressive strength of the blocks being significantly higher. Furthermore,
anisotropy is also observed in the brittleness of the material that is the post peak response dif-
fers with respect to load orientation as well. This is illustrated in below figure 130, [19] which
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shows different failure modes with respect to load inclination. Several things are noteworthy,
the failure modes are not equally brittle, as brick failure as seen in the shear failure of mode
B1 and the compression crushing failure of mode C are very brittle yet the shear mortar failure
modes are somewhat ductile.

Figure 130: Masonry response with respect to orientation

Masonry as a structural material is therefore highly non-linear and therefore very difficult to
computationally characterize. Another aspect of difficulty is the stochastic aspect of the strength
and geometry of a specific masonry wall, that is the general unpredictability of the specific
strength of masonry and the specific geometry especially for a larger geometry. This is caused
by the fact that not all bricks have necessarily the very same strength, and the geometrical layout
is very prone to constructional errors such as varying joint thicknesses making it generally very
difficult, perhaps folly to predict the accurate structural response of structural masonry.

Computational modelling of unreinforced masonry structures present many difficulties. The
structural behaviour of masonry structures is heterogeneous, anisotropic and mostly non-elastic
resulting in a highly non-linear mechanical behaviour. These factors complicates the numerical
modelling of masonry structures, yet viable approaches exists. In this paper, computational
modelling strategies of masonry is coarsely divided into three main categories of approaches
which are:

• Continuum deformation based models

• Block based models

• Limit analysis models

E.4.2 Continuum based models

Continuum based models revolves around simplifying the masonry as a continuous media and
thereby allowing the application of well established stiffness based finite element procedures
and as such, this approach can generally be characterizable as a macro-modelling approach. The
inherent issue with this approach is the fact that masonry is not continuous but an assemblage
of bricks and mortar. This creates issues with the formulation of the constitutive laws for the
computationally continuous masonry, where two main approaches exists [15]:

• Direct approaches, the constitutive equations are formulated and the mechanical proper-
ties are subsequently calibrated for instance by experimental means and directly imple-
mented in finite element continuum analysis.
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• Homogenization on a structural scale of the masonry by coupling a material scale model
of a representative volume of masonry with a global continuum model and either adopting
this directly as above, however multi scale methods where the masonry scale model is
either corrected adaptively or for each step.

Figure 131: Continua approach results, fig 12. in [15]

Approximating the constitutive behaviour by the approaches shortly outlined above intro-
duces errors however the strength of these approaches lies within the computational efficiency
of modern finite element software allowing for very sophisticated models to be formulated.

Direct approaches
The direct approaches requires the characterization of the mechanical behaviour by some ap-
proximating general constitutive law and the parameterization of the mechanical properties gov-
erning these laws, here several families exists.

• Drastic idealization of the masonry constitutive behavior allowing for simple and elegant
however, inaccurate solutions.

• Nonlinear constitutive laws based on either fracture mechanics, damage mechanics or
plasticity theory
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• Spring based systems, the system is not modelled as a perfect continuum as deformations
and non-linearities are centralized in the springs at the interfaces connecting the elements
however the structure is discretized as a continuous mesh.

The idealization approaches generally evolves around Heyman’s model [32] of masonry
as a perfect no-tension material, which circumvents the issue of the troublesome constitutive
behaviour of masonry in tension regime and thereby allows for numerically inexpensive solu-
tions, which however are inaccurate due to the fact that masonry does have tension capacity
and ultimately results in discrepancies between the modelled failure modes and some experi-
mentally observed tensional failure modes. With this type of simplification a deformation based
FE model can be created as done in [33]. The same type of simplification is also applied in a
wide range of limit analysis based models and these simplifications were widely used in the era
before modern computational ability, whereas now it can serve as a quick preliminary analysis
tool.

The second approach, the formulation of nonlinear constitutive laws and implementation
into a finite element model of deformable elements based on some nonlinearity model of either
plasticity, fracture or damage mechanics is a field thoroughly researched in relation to concrete
structures, however when implemented with respect to masonry the multi-level anisotropy as
described earlier presents challenges. Especially, phenomena such as block separation, block
rotation and frictional sliding are hard to model by continuum constitutive approaches[34]. A
way to approach this deficiency, is to introduce interface non-linear springs between the brick fi-
nite elements and thereby diverging form the pure continua approach however, fracture, damage
and softening of these springs is possible to model. These types of solutions are sound on pa-
per however, difficulties lies within the issue of numerical convergence as sharp non-linearities
such as block separation can cause the numerical simulation to bounce back and forth without
convergence.

Homogenization Approaches
The family of homogenization approaches can generally be considered an equidistant point be-
tween micro and macro modelling. The general procedure is to define the constitutive behaviour
by a volume deemed representative and then applying this to a macro sized continuum finite el-
ement model. This constitutive model can then by recalibrated during the numerical process,
thus allowing for the masonry material complexities to by continuously formulated appropri-
ately as the structure strains. Two main approaches with different complexity levels exist:

• A-priori homogenization

• Step by step homogenization

A-priori homogenization means performing the constitutive homogenization of a represen-
tative volume which can approximately characterize the macro behavior of the masonry struc-
ture prior to the continuum finite element analysis and then performing the global analysis with
the a-priori deduced mechanical parameters. This concept of homogenization was first phrased
in 1992 by S. Pietruszczak [35], where he employed the approach of defining the global elastic
parameters of a masonry structure by means of a-priori homogenization. Later on, the method-
ology is extended to also define a strength domain and a homogenized failure surface as done
by Milani in [17]. This approach generally provides a strong tool in the application of real

Aarhus University E- 13



E Literature study: Robustness of masonry structures Robusness of masonry structures by limit analysis

structures, as the computational effort required is not massive making the approach applicable
to real-life sized structures.

Step by step homogenization means computing mechanical parameters of the representative
volume as the structure progressively strains and fractures and thereby iteratively performing
the structural analysis by reiterating the evaluation of the mechanical parameters. This allows
for much more complicated models to be formulated and allows to describe non-linearities
such as softening, damage, contact effects and frictional sliding not achievable by the a-priori
homogenization [15]. The approach is computationally demanding as it requires the global
scale model and the material scale model to run in tandem and step by step update the constitu-
tive behaviour, yet the methodology provides strong predictive ability of the masonry response
up until very large strains and separation of blocks where the continuum framework lacks. A
final point regarding homogenization approaches is that it requires some interpretation of the
final predicted failure deformation configuration of the brickwork as it does not fail as a homo-
geneous continua but by separation of individual blocks and thereby creating inconsistencies
between the real failure deformation stage and the modelled one.

E.4.3 Block based models

Block based models is within this paper defined as a family of models where the masonry
bricks and the mortar connecting them is modelled separately and thereby avoiding a wide
range of issues intrinsic to the continuum approach outlined above. A non-exhaustive list of the
advantages to block-based modelling is:

• An-isotropy is implicitly included in the constitutive behaviour as the actual masonry
bond is modelled and the mechanical parameters of brick and mortar can be modelled
independently of each other.

• Failure modes are clearly identifiable in contrast to continuum approaches

• Out of plane and in-plane loading and their interaction can be modelled

The advantages are therefore many, the only major drawback is the massive computational
effort required to execute the models properly, thereby rendering these models most appropriate
for academic research and smaller scale models. Within the general philosophy of block-based
models lies several sub-approaches. In this paper, two major ones are defined and categorized
into the following main approaches:

• Heterogeneous finite element approaches

• Contact-mechanics approaches

Heterogeneous finite element approaches
The heterogeneous finite element approaches is based within the well-known framework of de-
formable finite elements, but the mesh is created with some elements representing bricks and
some representing the mortar contrary to the continuum based models outlined earlier. Within
this framework is again two main methods. The first and simplest is the application of zero
thickness interface elements representing the mortar within the finite element mesh whereas
the second approach is to model the texture of the masonry by means of solid elements with
mechanical properties of the brick, and solid elements with mechanical properties of the mortar.
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In the interface element approach, the material non-linearity phenomena are most often
concentrated in the interface elements corresponding well with the fact that most yielding modes
can be attributed to the mortar, see figure 129, which also makes the computational demand less
in contrary to having the bricks behave non-linearly as well. The material non-linearities are
then handled by nonlinear springs between the solid continuum elements representing the bricks
and the interface element allowing for softening effects and frictional sliding to be modelled. A
general issue of the stiffness based finite element approaches is the issue of geometrical non-
linearities attributed to the separation of blocks resulting in large displacements conflicting with
the need of nodal compatibility. A rather complete model, incorporating both material non-
linearity by interface elements and geometric non-linearity by kinematics as well as being in
3D is presented in [36] by Mancorini in 2011 adopting the type of elements as illustrated in
figure 132.
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Figure 132: Mancorini FE interface model, fig 1 and 2. in [36]

The other method of representing the brickwork as a heterogeneous finite element assem-
blage of solid continuum elements is not literally as well presented as the interface approach,
yet [37] does a comparative study where the authors create a model with solid element bricks
connected with interface elements, solid bricks connected with solid mortar elements, and a
combination of the two where the both solid mortar and solid bricks are connected with an
interface element - they also put in interface elements vertically within the brick elements to
be able to model compressive splitting of the elements. An illustration of the configuration is
shown below in below figure 133.

Figure 133: Petracca masonry modelling, fig 1 [37]

The material nonlinearity model is one based on damage mechanics and they eventually
conclude that all the three models created replicates well an experiment conducted on a ma-
sonry shear wall with the differences being that the interface model and the combined model
slightly overestimates shear strength and the solid continuum one slightly conservatively under-
estimates shear strength.

Contact mechanics
The family of contact models revolves around the concept of contact mechanics which revolves
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around the study of rigid or deformable bodies touching each other, where perpendicular normal
stress is generated as a consequence of the contact and tangential frictional stresses are subse-
quently generated. Several approaches exists, but the must widely diffused method - both in
academics and in commercial software - is the Discrete Element Method originally developed
by P.A. Cundall in 1971. This approach discretises a solid into a finite volume of individual
particles, then initializing the simulation each particle is set an initial velocity and for each ex-
plicit time step, contacts are generated, subsequent normal and frictional forces are calculated
and velocities are calculated by an explicit integration scheme. In below figure 134 is a failure
mode of a panel under vertical load by Sarhosis from [38] from a discrete element simulation.

Figure 134: Sarhosis DEM simulation, p.85 in [38]

Relating this method specifically to masonry, the particles are the bricks, and the mortar is
simulated by springs generated at contact points with constitutive laws representing the non-
linear properties of the mortar and a failure criterion such as the Mohr-Coloumb. This formula-
tion allows most of the masonry non-linear phenomena to be described such as block separation
and frictional sliding but it has a hard time simulating compressive crushing of the bricks. The
discrete element method is a framework applicable to many fields of study but it excels when
tackling masonry mechanics as all the heterogeneities of masonry are implicitly accounted for.
A drawback of the discrete element method, is the computational demand of applying it to larger
structures and the fact the output of a simulation is the spatial and kinetic configuration of the
blocks with little knowledge of the stress state of the structure [38].

E.4.4 Limit analysis models

Limit analysis is fundamentally based around the principles of plastic lower bound and upper
bound solutions. These solutions are based upon the extremum principles(lower and upper)
which states that, a solution can be obtained without the fulfillment of all three of the basic con-
ditions required for an exact solution: physical, kinematic, and static/dynamic but rather, with
only two of them which in practice is very convenient. Combining physical and static/dynamic
conditions forms the lower bound solutions and combining the physical and kinematic forms
the upper bound solutions wherein each an infinite amount of solutions satisfying the two con-
ditions can be found. The lower bound solutions approach the exact collapse multiplier from
below, making them safe solutions whereas the upper bound solutions approach the exact col-
lapse multiplier from above, rendering them generally unsafe unless the practicing engineer is
confident in he’s abilities.
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Figure 135: Illustration of basic conditions and their applicability to plastic solutions

Limit analysis solutions has and is still being applied to masonry structures especially in
the practical design of masonry structures especially as the solutions with a few simplifica-
tions are demonstrable by hand and therefore circumvents many of the difficulties of modelling
masonry. Computational numerical models of masonry is however not as widespread as for
instance non-linear deformation finite element modelling. The following two subsections give
a brief overview of a few approaches to computational limit analysis divided into lower bound
and upper bound solutions.

Lower bound solutions
Applying the plastic lower bound theorem to masonry dates back to Heyman [32] where the
basic methodology is the assumption of no-tension strength and thereby finding a network of
compression only struts within the structure in equilibrium. This simplification yields good
results when applied to masonry structures with practically negligible tension strength as for
instance historical masonry where any mortar has perished away however, when applied to
modern time masonry structures with tensional capacity this assumption halts.

A framework for computational limit analysis utilizing plane strain linear stress finite ele-
ment is developed by Sloan[1] initially developed for geotechnics, however the framework has
been applied to masonry by Sutcliffe [16] and Milani [17] with success. The original framework
formulates the structural statics problem as a linear programming optimization problem where
the discretized equilibrium acts as equality constraints and a linearized yielding criterion acts
as inequality constraints. The framework is therefore generally applicable to many materials as
long as they have sufficient deformation capacity for the ultimate stress distribution to realize.
This is somewhat an issue for masonry as brittle failure modes are present as shown in figure
129 however if one can ensure that this failure mode - compressive splitting - doesn’t occur then
the methodology is sound. The mechanical behaviour is controlled within the yielding criterion
and this should therefore be formulated with care. The yielding criterion requires some sort
homogenization as it needs to be applicable independently of the orientation of the stress field
on the brick, a methodology for this has been conducted in [17] where a representative volume
element(RVE) using constant stress triangles has been used.

Upper bound solutions
The stress based finite element approach can also be extended to upper bound solutions as
demonstrated by both Milani and Sloan allowing rigorous solutions to be found as one can find
both an upper and a lower bound and compare. They both use an associative flow rule and a
equality matrix is created containing plastic multiplier rates following this associative flow rule
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and velocity relations within the discretized field and boundaries. One can then express the
energy dissipated in element surfaces and minimizing this returns an upper bound solutions.

Another upper bound approach is the Discontinuity layout optimization. This approach
employs the principles of yield line theory and is originally developed for shear yield lines in
soil but has also been applied to bending yield lines in concrete slabs. It has also been applied for
masonry but only for masonry arches by Gilbert [39] furthermore, a commercial software called
LimitState uses discontinuity layout optimization for analysis of masonry arch bridges. The
method discretizes a geometry and draws lines between the nodes and then employs an analogy
to optimal truss structures to identify kinematically admissible yield lines and subsequently
uses an optimization program to minimize the work done for the individual admissible yield
line configurations.

As this study aims to quantify how to numerically describe masonry in context of robustness,
the primary goal is something to describe deep beam or arching behaviour within shear walls.
This means that an upper bound program would have to predict yield lines as a combination of
shear and bending yielding while simultaneously accounting for all the anisotropic mechanical
parameters, which is troublesome for the reliability of an eventual numerical model.

E.4.5 Discussion of computational approaches in relation to robustness

The choice of computational tool usually comes down to the trade off between speed and the
accuracy or complexity required where it is most often preferable to choose the simplest model
available with sufficient accuracy to describe the issue. As stated earlier, computational formu-
lations of masonry mechanical behaviour is not easy and the very accurate models especially
the nonlinear finite element ones are computationally demanding. As the issue at hand is that of
structural robustness and therefore failure modes of large geometries, a fairly efficient and less
demanding approach is needed.

Another consideration is what type of result is needed. As outlined in chapter 2, disregarding
key element design and the tie-force system as sub-optimal robustness design methodologies,
the primary codified approach to structural robustness is alternative load paths and as such,
a computational approach that finds alternative stress distributions such as lower bound limit
analysis is a fitting tool. This is also what is done in reinforced concrete robustness design with
alternative load paths by lower bound limit analysis however, reinforced concrete is more duc-
tile and the ability to plastically redistribute stresses is not refutable whereas for masonry the
assumption of freely redistributing stresses must come with more care.

The method of linearly varying stress elements as developed by Sloan [1] and applied to
masonry by [16] is chosen as the preferred approach to develop a tool to evaluate robustness of
masonry structures by alternative load paths. To reiterate, the method evolves around equilib-
rium and a homogenized yield rule, one of the RVE homogenization approaches as described
in [17] or the one by Lourenco as adopted by [16] can be taken.

The method however has the following disadvantages:

• The method is based on 2D stress state elements and will require altercations to treat 3D
stress state problems. This is not strictly needed for alternative load path design but many
concrete failure events such as impact and explosion loads are out-of-plane loads and as
such are not strictly describable by the 2d lower bound stress elements.
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• The testing of robustness will probably include some out of plane load and some dynamic
effects which the framework cannot account for.

• The method requires a carefully calibrated homogenized yield model to yield accurate
results. Due to the inherent uncertainties and multiple levels of anisotropy this is hard to
define for an existing large structure not carefully created in a laboratory.

All these disadvantages are deemed inconsequential when compared with the advantages:

• Simplicity - the method is inherently very simple as there is no need to quantify complex
hardening laws or plastic flow rules which keeps computational time down, but also the
authors believe it to be advantageous to take the simplest approach required to sufficiently
solve a problem. The simplicity also makes the methodology adoptable for practical
design purposes.

• There is relatively few mechanical parameters to characterize, this comes as a continu-
ation of the above point but as the yield surface is the only material mechanical law to
define there is no need for hardening or plastic flow laws to be formulated and parame-
terized.

• The method appears to be one of the approaches that can handle the computational de-
mand of a real life sized structural element.

• The concept of limit analysis harmonizes well with the idea of structural robustness where
one envisions the structure in the event of failure.

In conclusion, the approach to deemed best for continuation is that of lower bound limit
analysis with stress elements as created by [1].

Aarhus University E- 20



E Literature study: Robustness of masonry structures Robusness of masonry structures by limit analysis

E.5 Conclusions
This paper presents a description of the cornerstones of structural robustness and a review of
the main guidelines in the field of the progressive collapse of masonry structures along with a
review of the existing numerical modelling strategies.
The development of structural robustness strategies for masonry structures has been shown and
concluded to be far behind strategies and guidelines for steel, concrete and composite structures.
Only the UFC4 and the British masonry code state specific requirements related to the tie-ing
force guideline, which is argued not to fit masonry material behaviour very well, since local and
effective Anchorage is hard to obtain in a low tension capacity -if any- material mostly relying
on friction. Alternative load paths is argued to be the most fitting robustness strategy, though
there is still a long way to go. Experimental tests and numerical studies needs to made to define
tools to prove robustness of masonry structures, hereby reducing the uncertainty and unknowns
on the subject when building large structures in masonry. Recent experimental tests on masonry
have been focusing on element behaviour when subjected to blast and impact loads, which in
the field of structural robustness mostly relates to the enhanced local stiffness strategies by try-
ing to describe both capacities of masonry and the force acting on the element. Large scale tests
testing the structural consequences of a local failure is needed to verify possible alternative load
bearing mechanisms within masonry structures.

Existing numerical modelling strategies divided into three categories has been described and
advantages and disadvantages are of each modelling strategy category are pointed out. Focus-
ing on structural robustness the most suitable modelling strategy is discussed and it is concluded
that a fairly accurate and less computational demanded approach is needed when trying to de-
scribe failure modes of large geometries. The most suitable approach is found to be a lower
bound limit analysis where simplicity, familiarity and low computational demand outweighs
disadvantages like being 2D based and therefore do not include out-of-plane loads and the re-
liance on well calibrated homogenized yield model to produce accurate results.
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